[スポンサーリンク]

化学者のつぶやき

ジアステレオ逆さだぜ…立体を作り分けるIr触媒C–Hアリル化!

[スポンサーリンク]

イリジウム触媒を用いたアルキンとアリルエーテルとのエナンチオ、ジアステレオ選択的プロパルギル位C–H結合アリル化が開発された。配位子によりジアステレオ選択性を逆転させることができる。

プロパルギル位C–H官能基化

プロパルギル位が置換されたキラルなアルキンは、有機合成における有用なビルディングブロックである。これらの化合物の不斉合成法として、金属アセチリドの求核付加反応や、1,3-エンインの付加反応、プロパルギルアルコール類やハロゲン化物の求核置換反応が知られる(図1A)[1]。それに対して、プロパルギル位C–H官能基化による不斉合成法は少ない[2]。例として、金属ナイトレンや金属カルベンによる触媒的なプロパルギル位C–H挿入反応が挙げられる(図1B)。

本論文著者であるピッツバーグ大学Wang助教授らは、以前鉄触媒を用いたプロパルギル位C–H官能基化を報告した(図1C)[3a]。本反応では、鉄触媒がアルキンに配位することで塩基によるプロパルギル位の脱プロトン化が促進され、生じるアレニル鉄種がアルデヒドなどの求電子剤と反応する。後に、Zhangらは類似の反応プロセスを用いて金触媒によるプロパルギル位の分子内不斉C–H官能基化を達成した[3b]

今回、Wangらはイリジウム触媒を用いたアルキンとアリルエーテルとのエナンチオおよびジアステレオ選択的プロパルギル位C–H結合アリル化を開発した(図1D)。興味深いことに、用いる配位子をキラルにするとアンチ体が、ラセミの配位子ではシン体が得られる。

図1. (A) キラルプロパルギル化合物の一般的合成法 (B) プロパルギル位C–H挿入反応 (C) アレニル金属種を経るC–H官能基化 (D) 今回研究

 

“Enantioselective and Diastereodivergent Allylation of Propargylic C–H Bonds”
Zhu, J.; Wang, Y.; Charlack, A. D.; Wang, Y.-M. J. Am. Chem. Soc. 2022, 144, 15480–15487 DOI: 10.1021/jacs.2c07297

論文著者の紹介

研究者 : Yi-Ming Wang (王 亦鸣)

研究者の経歴

2004–2008 B.Sc. Harvard University, USA (Prof. Andrew G. Myers)
2008–2013 Ph.D. University of California, Berkeley, USA (Prof. F. Dean Toste)
2013–2017 Postdoc, Massachusetts Institute of Technology, USA (Prof. Stephen L. Buchwald)
2017–                            Assistant Professor, University of Pittsburgh, USA
研究内容 : 鉄触媒を用いたアルキン、アルケン、アレンのC–H官能基化、ビニルカチオン化学

 

論文の概要

著者らは、アルキン1とアリルエーテル2[Ir(cod)Cl]2/(S)-L触媒と2,2,6,6-テトラメチルピペリジン(TMPH)、BF3·OEt2存在下反応させるとアンチ体の1,5-エンイン3が高エナンチオおよびジアステレオ選択的に得られることを見いだした(図2A)。配位子をラセミ体(±)-Lとするとシン体4が得られる。種々のアリールアルキンに加えアルケニルアルキンを用いても反応が進行し、対応する1,5-エンインが生成する(3a, 4a, 3b )。高反応性のトシラートをもつ1,5-エンイン(3c, 4c)も合成可能である。

本反応で得られる3cを誘導体化することでキラルな骨格が様々構築できる(図2B)。例えば、金触媒による環化異性化により[3.1.0]シクロヘキセン5が、またヨードアレーン6とカテラニ型反応させることでインドール7が合成できた。

様々な機構解明実験の結果、以下の反応機構が提唱されている(図2C)。初めに、系中で生じたカチオン性イリジウム触媒I2aが配位しアリルエーテル錯体IIが生じ、これにアルキン1aが配位して錯体IIIを形成する。続いて、TMPHがプロパルギル位C–H結合を脱プロトン化しアレニルイリジウムIVが生じた後、アリルエーテルの酸化的付加によりπ-アリルイリジウムVとなる。還元的脱離によりVから3aが得られるとともに、Iが再生する。配位子と3aのエナンチオ過剰率の間に非線形効果が見られたことから、2つの配位子がイリジウム中心に配位した錯体が活性種であることがわかっている。本活性種により、ラセミのアリルエーテルが速度論的光学分割され、(S)-Lを配位子にした際に(S)-2が優先して反応することが確かめられている。なお、配位子によるジアステレオ選択性の逆転に関する結論は出ておらず、続報が待たれる。

図2. (A) 反応条件と基質適用範囲 (B) 生成物3cの誘導体化 (C) 推定反応機構

 

以上、イリジウム触媒を用いたプロパルギル位のエナンチオ、ジアステレオ選択的C–Hアリル化が開発された。配位子によるジアステレオ選択性の逆転も含め、本イリジウム触媒の多機能っぷりに思わずひっくり返ってしまいそうである。

参考文献

  1. (a) Nishibayashi, Y. Transition-Metal-Catalyzed Enantioselective Propargylic Substitution Reactions of Propargylic Alcohol Derivatives with Nucleophiles. Synthesis 2012, 2012, 489–503. DOI: 1055/s-0031-1290158 (b) Zhang, D.-Y.; Hu, X.-P. Recent Advances in Copper-Catalyzed Propargylic Substitution. Tetrahedron Lett. 2015, 56, 283–295. DOI: 10.1016/j.tetlet.2014.11.112 (c) Geary, L. M.; Woo, S. K.; Leung, J. C.; Krische, M. J. Diastereo- and Enantioselective Iridium Catalyzed Carbonyl Propargylation from the Alcohol or Aldehyde Oxidation Level: 1,3-Enynes as Allenylmetal Equivalents. Angew. Chem., Int. Ed. 2012, 51, 2972–2976. DOI: 10.1002/anie.201200239
  2. (a) Ju, M.; Zerull, E. E.; Roberts, J. M.; Huang, M.; Guzei, I. A.; Schomaker, J. M. Silver-Catalyzed Enantioselective Propargylic C–H Bond Amination through Rational Ligand Design. Am. Chem. Soc. 2020, 142, 12930–12936. DOI: 10.1021/jacs.0c05726 (b) Liu, Z.; Qin, Z.-Y.; Zhu, L.; Athavale, S. V.; Sengupta, A.; Jia, Z.-J.; Garcia-Borras̀, M.; Houk, K. N.; Arnold, F. H. An Enzymatic Platform for Primary Amination of 1-Aryl-2-alkyl Alkynes. J. Am. Chem. Soc. 2022, 144, 80–85. DOI: 10.1021/jacs.1c11340
  3. (a) Wang, Y.; Zhu, J.; Durham, A. C.; Lindberg, H.; Wang, Y.-M. α-C–H Functionalization of π-Bonds Using Iron Complexes: Catalytic Hydroxyalkylation of Alkynes and Alkenes. Am. Chem. Soc. 2019, 141, 19594–19599. DOI: 10.1021/jacs.9b11716 (b) Li, T.; Cheng, X.; Qian, P.; Zhang, L. Gold-Catalysed Asymmetric Net Addition of Unactivated Propargylic C–H Bonds to Tethered Aldehydes. Nat. Catal. 2021, 4, 164–171. DOI: 10.1038/s41929-020-00569-8
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. ケムステ10年回顧録― 副代表版
  2. 有機ナノチューブの新規合成法の開発
  3. アルツハイマー病に対する抗体医薬が米国FDAで承認
  4. 人前ではとても呼べない名前の化合物
  5. 18万匹のトコジラミ大行進 ~誘因フェロモンを求めて②~
  6. 有機反応を俯瞰する ー縮合反応
  7. アジリジンが拓く短工程有機合成
  8. C&EN コラム記事 ~Bench & Cu…

注目情報

ピックアップ記事

  1. 福井鉄道と大研化学工業、11月に電池使い車両運行実験
  2. 光化学スモッグ注意報が発令されました
  3. 二段励起型可視光レドックス触媒を用いる還元反応
  4. アルケンのエナンチオ選択的ヒドロアリール化反応
  5. グラクソ、抗血栓症薬「アリクストラ」の承認を取得
  6. パーキン反応 Perkin Reaction
  7. MEDCHEM NEWS 31-1号「低分子創薬」
  8. バリー・トロスト Barry M. Trost
  9. 「新反応開発:結合活性化から原子挿入まで」を聴講してみた
  10. 有望ヘリウム田を発見!? ヘリウム不足解消への希望

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年1月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

MEDCHEM NEWS 34-1 号「創薬を支える計測・検出技術の最前線」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

医薬品設計における三次元性指標(Fsp³)の再評価

近年、医薬品開発において候補分子の三次元構造が注目されてきました。特に、2009年に発表された論文「…

AI分子生成の導入と基本手法の紹介

本記事では、AIや情報技術を用いた分子生成技術の有機分子設計における有用性や代表的手法について解説し…

第53回ケムステVシンポ「化学×イノベーション -女性研究者が拓く未来-」を開催します!

第53回ケムステVシンポの会告です!今回のVシンポは、若手女性研究者のコミュニティと起業支援…

Nature誌が発表!!2025年注目の7つの技術!!

こんにちは,熊葛です.毎年この時期にはNature誌で,その年注目の7つの技術について取り上げられま…

塩野義製薬:COVID-19治療薬”Ensitrelvir”の超特急製造開発秘話

新型コロナウイルス感染症は2023年5月に5類移行となり、昨年はこれまでの生活が…

コバルト触媒による多様な低分子骨格の構築を実現 –医薬品合成などへの応用に期待–

第 642回のスポットライトリサーチは、武蔵野大学薬学部薬化学研究室・講師の 重…

ヘム鉄を配位するシステイン残基を持たないシトクロムP450!?中には21番目のアミノ酸として知られるセレノシステインへと変異されているP450も発見!

こんにちは,熊葛です.今回は,一般的なP450で保存されているヘム鉄を配位するシステイン残基に,異な…

有機化学とタンパク質工学の知恵を駆使して、カリウムイオンが細胞内で赤く煌めくようにする

第 641 回のスポットライトリサーチは、東京大学大学院理学系研究科化学専攻 生…

CO2 の排出はどのように削減できるか?【その1: CO2 の排出源について】

大気中の二酸化炭素を減らす取り組みとして、二酸化炭素回収·貯留 (CCS; Carbon dioxi…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー