第444回のスポットライトリサーチは、東京大学薬学部/大学院薬学系研究科 薬品代謝化学教室に在籍されていた岩木 慎平(いわき しんぺい)博士にお願いしました。
本プレスリリースの研究成果は蛍光イメージングについてで、蛍光イメージングを行うためには、標的とする生体分子(もしくは生体環境)を認識して蛍光が off から on へと変化する蛍光プローブが必要不可欠です。ローダミン色素は、高い蛍光輝度、強い光退色耐性と共に水溶性を併せ持つ蛍光色素であり、生命科学研究において汎用されてきました。一方、ローダミン色素の N 原子にフェニル基が結合したフェニルローダミン類は、ローダミン色素と極めて類似した分子構造であるにも関わらず、無蛍光性であることが知られています。これまでこのフェニル基を持つローダミン色素類は消光団として利用されてきましたが、詳細な消光機構に関しては調べられていませんでした。そこで本研究では、このフェニルローダミン色素の無蛍光性メカニズムの解明を行い、得られた知見を基に新たな蛍光プローブの分子設計法を確立しました。
この研究成果は、「Journal of the American Chemical Society」誌およびプレスリリースに公開されています。
Kenjiro Hanaoka, Shimpei Iwaki, Kiyoshi Yagi, Takuya Myochin, Takayuki Ikeno, Hisashi Ohno, Eita Sasaki, Toru Komatsu, Tasuku Ueno, Motokazu Uchigashima, Takayasu Mikuni, Kazuki Tainaka, Shinya Tahara, Satoshi Takeuchi, Tahei Tahara, Masanobu Uchiyama, Tetsuo Nagano, Yasuteru Urano
DOI: 10.1021/jacs.2c06397
指導教員であった慶應義塾大学薬学部の花岡健二郎 教授より岩木博士についてコメントを頂戴いたしました!
岩木慎平さんは、東京大学薬学部にて、学部4年生から修士課程においては、ガドリニウムイオン(Gd3+)錯体を基盤とした機能性MRI造影剤の開発を行っていました。博士課程から自分で新しい研究テーマを見つけるといった我々の研究室の伝統によって、当時、東京大学薬学部の准教授だった私と議論し、研究対象を大きく変えて、本研究に取り組みました。この研究では、分子の励起状態での計算といった我々にとって新しい技術が必要でしたが、計算化学の専門家である東京大学薬学部の内山真伸 教授に計算化学を習い、フェニルローダミン類といった無蛍光性の色素の消光メカニズムの予想に成功しました。ただ、この予想を実験的に示すためには、多くの誘導体合成と解析が必要とされましたが、岩木君の地道な実験によってそれらを実証すると共に、さらに蛍光プローブの新しい分子設計法の開発にまで成功しました。忍耐強い正に研究者らしい岩木さんだからこそ成し遂げられたと思います。そもそも、この無蛍光性のフェニルローダミン類は、何十年も前から強い蛍光を発しそうな色素構造を持っているものの無蛍光性であることが知られていたにも関わらず、その消光メカニズムの解明に誰も取り組んでいませんでした。ただ、こういった見落とされていた興味深い現象に、激しい競争はないものの面白い現象が眠っているものと感じました。このように、新たな着眼点から研究対象を決め、地道な実験を積み重ね、面白い現象を見出したことは、正に基礎研究の醍醐味であり、このようなことが研究の魅力ではと岩木さんも感じたのではないかと思います。
Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。
本研究では、フェニルローダミン類が無蛍光性となるメカニズムを解析し、得られた知見を応用した蛍光プローブの新たな分子設計法を提案しました。特定の生体分子を認識して蛍光がOFFからONへと変化する「蛍光プローブ」は生命科学研究に不可欠な存在です。ローダミンは蛍光プローブの母核として汎用されている強蛍光の色素ですが、そのN原子をフェニル置換した誘導体、フェニルローダミン類は無蛍光性であること(図1(a))が知られていました。本研究は、両者のわずかな構造の違いがなぜ蛍光性の違いを生み出すのか?という点への興味から始まりました。
計算化学と誘導体の合成・光学特性の検証を繰り返したところ、キサンテン環–N 原子間の結合が 90 度ねじれた構造が励起状態で最も安定な構造となり、その際に分子内電荷移動状態を形成する「ねじれ型分子内電荷移動 (Twisted intramolecular charge transfer: TICT)状態」がフェニルローダミン類の無蛍光性の原因(図1(b))であると分かりました。つまりキサンテン環–N 原子間の「結合のねじれ」が無蛍光の原因となるため、これを応用すれば、特定の生体分子と結合して「結合のねじれ」が抑制されたときのみ、蛍光性がOFFからONへと変化する蛍光プローブの開発が可能となる(図1(c))と考えました。このコンセプトによりタグタンパク質である HaloTag®と SNAP-tag®に対する蛍光プローブの開発に成功し、培養細胞における細胞膜上のタグ蛋白質の発現や、マウス脳における神経細胞での HaloTag 蛋白質の発現の観察に成功しました。※後者のマウス脳における実験系は、私の卒業後に実施していただいた成果です。
Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。
無蛍光性メカニズム検証のため合成したPh-DEQRとPh-DEIRの蛍光特性の違い(図2)を見つけた時が最も印象的でした。計算化学により、消光メカニズムがTICTと示唆されたため、キサンテン環–N 原子間がねじれないように固定してやれば光るだろうと6員環/5員環で架橋した2つの化合物を合成しました。
Ph-DEIRは狙い通り強蛍光性となった一方、予想と反して6員環のPh-DEQRは無蛍光性のままでした。慌てて計算化学でシミュレーションを行ったところ、6員環のPh-DEQRは椅子型→船型の立体配座の変化により、「結合のねじれ」が生じうるという結果となりました。仮説と矛盾せず非常に安心したと同時に、「予想と違って面白い!」と強く感じました。
Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?
本研究は計算化学でのシミュレーションと合成による検証の両輪で進めたものですが、研究開始時点で所属研究室には十分な計算化学に関する知識・経験・環境がなかったため、励起状態での挙動の計算方法とその解釈は高いハードルとなりました。この点は、計算化学の専門家である同じ東大薬学部の内山真伸教授と研究室の皆様にご指導いただき勉強することで乗り越えることができました。もし内山教授のご支援がなければ研究をスタートすることも難しかったと感じており、心から感謝しております。
Q4. 将来は化学とどう関わっていきたいですか?
私は本研究により2016年に博士号を頂いた後、製薬企業に就職しました。入社後5年半ほどは研究職に従事しておりましたが、1年ほど前に マーケティング部門に異動し、主に開発中の医薬品の価格を予想する業務を行っています。本部門では自分の出したアウトプットが自社の投資判断や売り上げに直結するので、日々大きな責任感とやりがいを感じながら仕事をしています。(未だ不慣れですが・・・。)
医薬品の価格を予想するためには、医薬品の持つ価値を深く理解することが必要で、そのためにはやはり化学を含むサイエンスの知識が必要です。これからは、化学論文の著者側としてではなく、読者側として最新の化学を楽しませていただきたく思います。
Q5. 最後に、読者の皆さんにメッセージをお願いします。
本研究は、もともと「将来こんなことに役に立つはず!」ではなく、「なんでこうなっているの?」と純粋な興味からスタートした研究です。正直、光らない(=華がない?)分子を調べるなんて非常にマニアック・・・と自分でも思っておりましたが、興味に猛進したことで最終的に様々な蛍光プローブの開発に応用できる技術へとつながりました。研究を始めたてでテーマの意義に悩んでいる方がもしおられたら、興味のあることに全力で取り組んでいただければと思います。
最後になりますが、本研究を進めるにあたりご指導いただいた花岡健二郎先生、浦野泰照先生、長野哲雄先生および本研究の先行研究に取り組んでいただいた明珍琢也博士、卒業後研究を引き継いでいただいた池野喬之博士、本論文の共著者の先生方に深く感謝を申し上げます。
研究者の略歴
岩木 慎平(いわき しんぺい)
2010年~2016年 東京大学薬学部/大学院薬学系研究科 薬品代謝化学教室所属(B4~D3:博士(薬科学))
2016年より製薬企業勤務
写真は在学時のものです