[スポンサーリンク]

化学者のつぶやき

ラジカルonボロンでフロンのクロロをロックオン

[スポンサーリンク]

光触媒とアミンボラン錯体を用いた不活性アルケンのヒドロジフルオロメチル化反応が開発された。様々な医薬品に対して簡便にジフルオロメチル基を導入できる。

不活性アルケンのジフルオロメチル化反応

ジフルオロメチル基はヒドロキシ基やチオール、アミンの生物学的等価体であり、かつ生体内で親油性の水素結合ドナーとして働く [1]。これらの特徴から、ジフルオロメチル基の生物活性物質への導入法は数多く開発されている(図1A)。中でもアルケンのヒドロジフルオロメチル化は、アルケンを足がかりにしてジフルオロメチル基を簡便に導入できる手法である。ジフルオロメチル化剤としてジフルオロメタンスルホン酸クロリドやジフルオロメタンスルホン酸塩が用いられるが、いずれも調製に数工程を要する[2]。これらの試薬の原料である、安価なクロロジフルオロメタン(フロン22)を直接ジフルオロメチル化剤として利用できれば、より短工程でジフルオロメチル基の導入が可能になる(注1)。

フロン22をアルケンのヒドロジフルオロメチル化に利用するためには、結合開裂によりラジカルを生成する必要がある。しかしフロン22のハロゲン原子移動(XAT)や水素原子移動(HAT)は、C–Cl結合(約87 kcal/mol)やC–H結合(約100 kcal/mol)の結合解離エネルギー(BDE)の大きさから難易度が高い(図1B)[3]。また、ヒドロジフルオロメチル化に直接利用できるCF2Hラジカルを発生させるためには選択的にXATを起こす必要がある。

今回、本論文の著者らは配位子を有するボリルラジカル(LBR)に着目した(図1C)[4]。配位子によってホウ素上のスピン密度が変化し、反応性を調節できるLBRを用いれば、XATとHATを制御できると期待した。実際に、同著者らはアミンボリルラジカルを用いたXATによりフロン22からCF2Hラジカルを発生させ、不活性アルケンのジフルオロメチル化を達成した(図1D)。

図1. (A) ジフルオロメチル基をもつ医薬品 (B) フロン22の活性化 (C) ボリルラジカルの分類 (D) 今回の反応

 

“Difluoromethylation of Unactivated Alkenes Using Freon-22 through Tertiary Amine-Borane-Triggered Halogen Atom Transfer”

Zhang, Z.-Q.; Sang, Y.-Q.; Wang, C.-Q.; Dai, P.; Xue, X.-S.; Piper, J. L.; Peng, Z.-H.; Ma, J.-A.; Zhang, F.-G.; Wu,  J. Am. Chem. Soc. 2022, 31, 14288–14296.

DOI: 10.1021/jacs.2c05356

論文著者の紹介

研究者:Jun-An Ma (马 军安) (>研究室HP)

研究者の経歴:

1987–1991 B.Sc., Henan University, China
1991–1994 M.Sc., Nankai University, China (Prof. Run-Qiu Huang)
1994–1996 Senior Scientist, Guangzhou Baihua Flavor & Fragrance, China
1996–1999 Ph.D., Nankai University, China (Prof. Run-Qiu Huang)
1999–2002 Assistant & Associate Professor, Nankai University, China (Prof. Qi-Lin Zhou)
2002–2003 Postdoc, CNRS de l’IRCOF Universite de Rouen, France (Prof. Dominique Cahard)
2004–2005 Postdoc, Max-Planck-Institute for Coal Research, Germany (Prof. Manfred T. Reetz)
2005–                             Professor, Tianjin University, China
2008                               Visiting Professor, RIKEN, Japan (Prof. Mikiko Sodeoka)

研究内容:触媒的不斉合成、有機フッ素化学

研究者:Fa-Guang Zhang (张 发光)

研究者の経歴:

2005–2009 B.Sc., Tianjin University, China (Prof. Jun-An Ma)
2009–2014 Ph.D., Tianjin University, China (Prof. Jun-An Ma)
2014–2017 Postdoc, Technion, Israel (Prof. Ilan Marek)
2017–                             Associate Professor, Tianjin University, China (Prof. Jun-An Ma)

研究内容:フッ素化学、歪み環、不斉合成

研究者:Jie Wu (吴 杰) (>研究室HP)

研究者の経歴:
2002–2006 B.Sc., Beijing Normal University, China
2006–2012 Ph.D., Boston University, USA (Prof. James Panek)
2012–2015 Postdoc, MIT, USA (Prof. Timothy Jamison and Prof. Alan Hatton)
2015–2021                  Assistant Professor, National University of Singapore, Singapore
2021–                             Associate Professor, National University of Singapore, Singapore

研究内容:フローケミストリー、光化学

論文の概要

tBuCN中、4CzIPNおよびボラン-トリメチルアミン錯体、ジフェニルジスルフィドを添加し、アルケン1、クロロジフルオロメタン(2)に青色光を照射すると、ジフルオロメチル化体3が得られる(図2A)。本反応はアンチマルコフニコフ型で進行し、優れた位置選択性を示す。また、ヒドロキシ基(1a)、トシル基(1b)、クロロ基(1c)、エステル(1d)、カルボン酸(1e)といった種々の官能基を有するアルケンに適用でき、対応するジフルオロメチル化体(3ae)を高収率で与えた。ホウ素やリンが含まれるアルケンもジフルオロメチル化され、3f3gが得られた。さらに、複雑な骨格を有する医薬分子にも応用可能であり、プレグレノンやシクロプロパン環をもつビオアレトリンに対しても適用でき、それぞれ3h3iを与えた。

次に、著者らはラジカルクロック実験による反応機構解明に取り組んだ(図2B)。b-ピネン(4)を反応させたところ開環体5が収率50%で得られ、本反応がラジカル機構で進行していることが示唆された。また、DFT計算による反応機構解明研究の結果、XATはHATに比べ活性化エネルギーが2.0 kcal/mol低い上、発エルゴン反応であることがわかった(図2C)。

反応機構は次のように提唱されている(図2D)。まず、可視光照射によってジフェニルジスルフィドからチイルラジカルが生成する。続いて、光励起された4CzIPN(PC)がチイルラジカルを一電子還元し、生じたラジカルカチオン(PC•+)とボラン-アミン錯体との一電子移動(SET)が進行することでアミンボリルラジカルが生じる。このアミンボリルラジカルとクロロジフルオロメタン(2)との間でXATが起こり、CF2Hラジカルが発生する。アルケン1に対しCF2Hラジカルが付加した後、チオフェノールから水素原子を引き抜きジフルオロメチル化体3が得られる。

図2. (A) 最適条件と基質適用範囲 (B) ラジカルクロック実験 (C)エネルギーダイアグラム (D) 推定反応機構

 

以上、フロン22をジフルオロメチル化剤とした、不活性アルケンのヒドロジフルオロメチル化反応が開発された。温室効果ガスであるフロン22を用いて医薬品を修飾しており、創薬分野に光を当てる可能性を秘めている(注2)。

注釈

(注1)フロン22はクロロホルムとフッ化水素から調製でき、テフロンなどのフッ素樹脂の原料として利用される。しかし、日本ではオゾン層保護法とフロン排出抑制法により、フロン類の製造、輸出入、大気中への放出が規制されている[5]

(注2)モントリオール議定書により、ヒドロクロロフルオロカーボン類は先進国では2020年、発展途上国では2030年までの全廃が定められている[6]

参考文献

  1. Zafrani, Y.; Sod-Moriah, G.; Yeffet, D.; Berliner, A.; Amir, D.; Marciano, D.; Elias, S.; Katalan, S.; Ashkenazi, N.; Madmon, M.; Gershonov, E.; Saphier, S. CF2H, a Functional Group-Dependent Hydrogen-Bond Donor: Is It a More or Less Lipophilic Bioisostere of OH, SH, and CH3? J. Med. Chem. 2019, 62, 5628−5637. DOI: 10.1021/acs.jmedchem.9b00604
  2. (a)Moore, G. G. I. Fluoroalkanesulfonyl Chlorides. J. Org. Chem. 1979, 44, 1708−1711. DOI: 10.1021/jo01324a027 (b) Prakash, G. K. S.; Ni, C.; Wang, F.; Hu, J.; Olah, G. A. From Difluoromethyl 2-Pyridyl Sulfone to Difluorinated Sulfonates: A Protocol for Nucleophilic Difluoro(sulfonato)-methylation. Angew. Chem., Int. Ed. 2011, 50, 2559−2563. DOI: 10.1002/anie.201007594 (c) Fujiwara, Y.; Dixon, J. A.; Rodriguez, R. A.; Baxter, R. D.; Dixon, D. D.; Collins, M. R.; Blackmond, D. G.; Baran, P. S. A New Reagent for Direct Difluoromethylation. J. Am. Chem. Soc. 2012, 134, 1494−1497. DOI: 10.1021/ja211422g (d) Tang, X.-J.; Thomoson, C. S.; Dolbier, W. R., Jr. Photoredox- Catalyzed Tandem Radical Cyclization of N-Arylacrylamides: General Methods to Construct Fluorinated 3,3-Disubstituted 2-Oxindoles Using Fluoroalkylsulfonyl Chlorides. Org. Lett. 2014, 16, 4594−4597. DOI: 10.1021/ol502163f (e) Chen, X.; Wei, W.; Li, C.; Zhou, H.; Qiao, B.; Jiang, Z. Photoredox- Catalyzed Synthesis of Remote Fluoroalkylated Azaarene Derivatives and the α-Deuterated Analogues via 1,n-Hydrogen-Atom-Transfer- Involving Radical Reactions. Org. Lett. 2021, 23, 8744−8749. DOI: 10.1021/acs.orglett.1c03204
  3. (a) McMillen, D. F.; Golden, D. M. Hydroarbon Bond Dissocation Energies. Annu. Rev. Phys. Chem. 1982, 33, 493−532. DOI: 10.1146/annurev.pc.33.100182.002425 (b) Luo, Y.-R. Comprehensive Handbook of Chemical Bond Energies. Chapter Five BDEs of CHalogen Bonds; CRC Press, 2007.
  4. Capaldo, L.; Noël, T.; Ravelli, D. Photocatalytic Generation of Ligated Boryl Radicals from Tertiary Amine-Borane Complexes: An Emerging Tool in Organic Synthesis. Catal. 2022, 2, 957−966. DOI: 10.1016/j.checat.2022.03.005
  5. 経済産業省. “オゾン層保護・温暖化対策”. https://www.meti.go.jp/policy/chemical_management/ozone/index.html, (参照2022-8-30).
  6. 環境省. “モントリオール議定書”. https://www.env.go.jp/earth/ozone/montreal_protocol.html, (参照2022-8-30).
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 有機反応を俯瞰する ーエノラートの発生と反応
  2. MI×データ科学|オンライン|コース
  3. 研究職の転職で求められる「面白い人材」
  4. 学生に化学論文の書き方をどうやって教えるか?
  5. Nazarov環化を利用した全合成研究
  6. 化学反応を起こせる?インタラクティブな元素周期表
  7. これで日本も産油国!?
  8. マイクロ波化学の事業化プラットフォーム 〜実証設備やサービス事例…

注目情報

ピックアップ記事

  1. 血液検査による新しいがん診断方法の開発!
  2. 事故を未然に防ごう~確認しておきたい心構えと対策~
  3. 水が促進するエポキシド開環カスケード
  4. 細胞が分子の3Dプリンターに?! -空気に触れるとファイバーとなるタンパク質を細胞内で合成-
  5. 李昂 Ang Li
  6. CIPイノベーション共創プログラム「世界に躍進する創薬・バイオベンチャーの新たな戦略」
  7. 夏休みの自由研究に最適!~家庭でできる化学実験7選~
  8. 第19回 有機エレクトロニクスを指向した合成 – Glen Miller
  9. 元素周期表:文科省の無料配布用、思わぬ人気 10万枚増刷、100円で販売
  10. ケムステ版・ノーベル化学賞候補者リスト【2016年版】

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年11月
 123456
78910111213
14151617181920
21222324252627
282930  

注目情報

最新記事

「MI×データ科学」コース ~データ科学・AI・量子技術を利用した材料研究の新潮流~

 開講期間 2025年1月8日(水)、9日(木)、15日(水)、16日(木) 計4日間申込みはこ…

余裕でドラフトに収まるビュッヒ史上最小 ロータリーエバポレーターR-80シリーズ

高性能のロータリーエバポレーターで、効率良く研究を進めたい。けれど設置スペースに限りがあり購入を諦め…

有機ホウ素化合物の「安定性」と「反応性」を両立した新しい鈴木–宮浦クロスカップリング反応の開発

第 635 回のスポットライトリサーチは、広島大学大学院・先進理工系科学研究科 博士…

植物繊維を叩いてアンモニアをつくろう ~メカノケミカル窒素固定新合成法~

Tshozoです。今回また興味深い、農業や資源問題の解決の突破口になり得る窒素固定方法がNatu…

自己実現を模索した50代のキャリア選択。「やりたいこと」が年収を上回った瞬間

50歳前後は、会社員にとってキャリアの大きな節目となります。定年までの道筋を見据えて、現職に留まるべ…

イグノーベル賞2024振り返り

ノーベル賞も発表されており、イグノーベル賞の紹介は今更かもしれませんが紹介記事を作成しました。 …

亜鉛–ヒドリド種を持つ金属–有機構造体による高温での二酸化炭素回収

亜鉛–ヒドリド部位を持つ金属–有機構造体 (metal–organic frameworks; MO…

求人は増えているのになぜ?「転職先が決まらない人」に共通する行動パターンとは?

転職市場が活発に動いている中でも、なかなか転職先が決まらない人がいるのはなぜでしょう…

三脚型トリプチセン超分子足場を用いて一重項分裂を促進する配置へとペンタセンクロモフォアを集合化させることに成功

第634回のスポットライトリサーチは、 東京科学大学 物質理工学院(福島研究室)博士課程後期3年の福…

2024年の化学企業グローバル・トップ50

グローバル・トップ50をケムステニュースで取り上げるのは定番になっておりましたが、今年は忙しくて発表…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP