[スポンサーリンク]

化学者のつぶやき

タンパク質の定量法―紫外吸光法 Protein Quantification – UV Absorption

[スポンサーリンク]

原理

タンパク質中には紫外光を吸収するアミノ酸残基が含まれる。特にチロシン・トリプトファンの側鎖に由来する吸収が280 nm付近に存在する。バッファーにはこの付近に吸収をもつものが少ないため、この吸光度(A280)を計測することで、Lambert-Beerの法則に基づく濃度定量が行える。A280 = 1.0 (l =1 cm)のとき、タンパク質濃度が概ね1 mg/mLであるとして計算する。

実際にはタンパク質毎にチロシン・トリプトファン含有量が異なるので、この方法は厳密ではないが、簡便かつすぐに測定でき、サンプルを回収出来る点で価値が高い。

長所

  • サンプルの回収・再利用が可能
  • 操作が簡単で迅速

短所

  • 測定範囲は0.05-2 mg/mL、感度は比較的低い
  • 芳香族アミノ酸を持たないタンパク質(コラーゲンなど)は定量できない
  • タンパク質によって吸光度が異なる
  • 紫外吸収を持つ物質の混入は測定を妨害する[2]

(画像はこちらより引用)

 

測定上の注意点・コツ

  • とくにヌクレオチド類は260~280 nmに吸収をもつので注意が必要となる。A280/A260<1.5になると核酸の混入が疑われるため、他の方法を検討する。少量であれば下記補正式で濃度算出が可能である[3]

タンパク質濃度 [mg/mL] = 1.55 x A280 – 0.76 x A260

(画像はこちらから引用)

  • 紫外吸収測定用のサンプルセルは石英製を使う。プラスチック・ガラスは適さない。
  • Nanodropと呼ばれる装置をもちいることで、1-2μL程度の液量で測定可能。
  • 280 nmにおけるモル吸光係数(ε280)は、トリプトファン・チロシン・システイン二量体(シスチン)の含有量から、下記の式で計算可能である[4]こちらのサイトに一次配列を打ち込むことでも計算できる。

    ϵ280 [M-1cm-1]= nW x 5,500 + nY x 1,490 + nC x 125 (C = cystine)

関連動画

参考文献

  1. ”総タンパク質の定量法” 鈴木祥夫、ぶんせき 2018, 1, 2. [PDF]
  2. “[6] Quantification of protein” Stoscheck, C. M. Methods Enzymol. 1990, 182, 50. doi:10.1016/0076-6879(90)82008-P
  3. ”Isolation and Crystallization of Enolase” Warburg, O.; Christian W. Biochem. Z. 1942, 310, 384.
  4. “How to measure and predict the molar absorption coefficient of a protein” Pace, C. N.; Vajdos, F.; Fee, L.; Grimsley, G.; Gray, T. Protein Sci. 1995, 4, 2411. doi:10.1002/pro.5560041120

関連書籍

Molecular Cloning: A Laboratory Manual, Fourth Edition (3-Volume Set)

Molecular Cloning: A Laboratory Manual, Fourth Edition (3-Volume Set)

Green, Michael R., Sambrook, Joseph
¥44,500(as of 02/23 10:07)
Amazon product information

ケムステ関連記事

外部リンク

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 「ELEMENT GIRLS 元素周期 ~聴いて萌えちゃう化学の…
  2. 室温、中性条件での二トリルの加水分解
  3. 【著者インタビュー動画あり!】有機化学1000本ノック スペクト…
  4. ケムステ版・ノーベル化学賞候補者リスト【2019年版】
  5. マイクロ波プロセスを知る・話す・考える ー新たな展望と可能性を…
  6. 水素結合水H4O
  7. 書物から学ぶ有機化学 1
  8. 2014年ノーベル化学賞・物理学賞解説講演会

注目情報

ピックアップ記事

  1. 消光団分子の「ねじれ」の制御による新たな蛍光プローブの分子設計法の確立
  2. ニコラウ祭り
  3. 理系のための就活ガイド
  4. ビス[α,α-ビス(トリフルオロメチル)ベンゼンメタノラト]ジフェニルサルファー : Bis[alpha,alpha-bis(trifluoromethyl)benzenemethanolato]diphenylsulfur
  5. GRE Chemistry 受験報告 –試験当日·結果発表編–
  6. 化学の楽しさに触れるセミナーが7月に開催
  7. 2,2,2-トリクロロエトキシカルボニル保護基 Troc Protecting Group
  8. Dead Endを回避せよ!「全合成・極限からの一手」⑧
  9. [6π]光環化 [6π]Photocyclization
  10. NICT、非揮発性分子を高真空中に分子ビームとして取り出す手法を開発

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年11月
 123456
78910111213
14151617181920
21222324252627
282930  

注目情報

最新記事

MEDCHEM NEWS 34-1 号「創薬を支える計測・検出技術の最前線」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

医薬品設計における三次元性指標(Fsp³)の再評価

近年、医薬品開発において候補分子の三次元構造が注目されてきました。特に、2009年に発表された論文「…

AI分子生成の導入と基本手法の紹介

本記事では、AIや情報技術を用いた分子生成技術の有機分子設計における有用性や代表的手法について解説し…

第53回ケムステVシンポ「化学×イノベーション -女性研究者が拓く未来-」を開催します!

第53回ケムステVシンポの会告です!今回のVシンポは、若手女性研究者のコミュニティと起業支援…

Nature誌が発表!!2025年注目の7つの技術!!

こんにちは,熊葛です.毎年この時期にはNature誌で,その年注目の7つの技術について取り上げられま…

塩野義製薬:COVID-19治療薬”Ensitrelvir”の超特急製造開発秘話

新型コロナウイルス感染症は2023年5月に5類移行となり、昨年はこれまでの生活が…

コバルト触媒による多様な低分子骨格の構築を実現 –医薬品合成などへの応用に期待–

第 642回のスポットライトリサーチは、武蔵野大学薬学部薬化学研究室・講師の 重…

ヘム鉄を配位するシステイン残基を持たないシトクロムP450!?中には21番目のアミノ酸として知られるセレノシステインへと変異されているP450も発見!

こんにちは,熊葛です.今回は,一般的なP450で保存されているヘム鉄を配位するシステイン残基に,異な…

有機化学とタンパク質工学の知恵を駆使して、カリウムイオンが細胞内で赤く煌めくようにする

第 641 回のスポットライトリサーチは、東京大学大学院理学系研究科化学専攻 生…

CO2 の排出はどのように削減できるか?【その1: CO2 の排出源について】

大気中の二酸化炭素を減らす取り組みとして、二酸化炭素回収·貯留 (CCS; Carbon dioxi…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー