[スポンサーリンク]

化学者のつぶやき

グラム陰性菌を爆沈!!Darobactin Aの全合成

[スポンサーリンク]

グラム陰性菌に有効な抗生物質であるdarobactin Aの初の全合成が報告された。Larockインドール合成により2つのマクロ環を順に環化し、課題であったアトロプ選択性を発現させる合成戦略が本合成の鍵である。

Darobactin Aの合成

 薬剤耐性菌は人類の脅威である。特にグラム陰性菌は薬剤の侵入を阻む細胞外膜をもつため、薬剤耐性を示す細菌が多い。そのため、広範なグラム陰性菌に対して有効な新規抗生物質の探索・開発が盛んに研究されている。2019年、LewisらはPhotorhabdus微生物群から新規抗生物質としてdarobactin A(1)を単離した[1]1は広範なグラム陰性菌に選択的に作用し、グラム陽性菌には抗菌活性を示さない。1は外膜表面の膜タンパク質BamAに結合し、外膜タンパク質(OMP)の折りたたみを妨げることが明らかにされた(図1A)[2]。グラム陰性菌に対するこのような作用機序は前例がなく、1を有機合成により量的供給できれば薬剤耐性をもつグラム陰性菌に対する抗生物質の創薬研究を促進できる。1は、15員環および14員環の二環式ペプチド骨格を有し、その環上に2つのインドール部位をもつ。このインドール部位の高い平面性から、この2つのマクロ環は歪んでいる。さらに、この2つのインドール部位は回転障壁が高くアトロプ異性体が存在する。すなわち、1の全合成において、アトロプ選択性を制御しつつこれら2つの大員環をいかに構築するかが課題となる。

 今回、イリノイ大学のSarlahとMerckの合同チームは1の初の全合成を報告した。著者らは4つのフラグメント25から1を構築する合成戦略を立てた(図1B)。これらのフラグメントをペプチドカップリングによって連結し、課題の大員環をLarockインドール合成法によって構築することで、16工程(最長直線工程)でアトロプ選択的に1の合成を完了した。なお、同時期にスクリプス研究所のBaranらも同様にLarockインドール合成を駆使して1の全合成を報告した[3]

図1. (A) Darobactin AのBamAに対する作用機序(参考文献より抜粋) (B) Darobactin Aの構造と鍵となるフラグメント

 

“Total Synthesis of Darobactin A”

Nesic, M.; Ryffel, D. B.; Maturano, J.; Shevlin, M.; Pollack, S. R.; Gauthier, D. R.; Trigo-Mouriño, P.; Zhang, L.-K.; Schultz, D. M.; McCabe Dunn, J. M.; Campeau, L.-C.; Patel, N. R.; Petrone, D. A.; Sarlah, D. J. Am. Chem. Soc. 2022, 144, 14026–14030. DOI:  10.1021/jacs.2c05891

論文著者の紹介

研究者:Niki R. Patel

研究者の経歴:

2006–2010 B.S. in Chemistry, Temple University, USA

2010–2015 Ph.D. in Chemistry, Lehigh University, USA (Prof. Robert Flowers)

2015–2017 Postdoc, University of Pennsylvania, USA (Prof. Gary A. Molander)

2017–        Senior scientist, Merck

研究内容:銀を用いた酸化反応の機構解明研究、生体触媒、天然物合成

研究者:David A. Petrone

研究者の経歴:

2006–2011 B.S. in Chemistry, University of Guelph, Canada

2011–2016 Ph.D. in Chemistry, University of Toronto, Canada (Prof. Mark Lautens)

2016–2019 Postdoc, ETH Zürich, Switzerland (Prof. Erick M. Carreira)

2019–2020 Postdoc, University of Toronto, Canada (Prof. Douglas W. Stephan)

2020–        Senior scientist, Merck

研究内容:遷移金属触媒を用いた反応開発、天然物合成

研究者:David Sarlah (研究室HP)

研究者の経歴:

2002–2006 B.S. in Chemistry, University of Ljubljana, Slovenia

2006–2011 Ph.D. in Chemistry, Scripps Research Institute, USA (Prof. K. C. Nicolaou)

2011–2014 Postdoc, ETH Zürich, Switzerland (Prof. Erick M. Carreira)

2014–2021 Assistant Professor, University of Illinois, USA

2021–    Associate Professor, University of Illinois, USA

研究内容:天然物合成、合成方法論の開発

論文の概要

 著者らはまず、適切に保護されたアミノ酸同士のペプチドカップリング等を用いてフラグメント235を合成した(詳細は論文およびSI参照)。次にセリン誘導体6から4工程で7を得た。続いて、著者らは2つのマクロ環のアトロプ選択的な構築を目指した。Gloriusらが報告したRh触媒によるアセトアニリドのオルト位選択的ヨウ素化反応を7に適用することで、Cbz保護体8を合成した[4]8のCbz基をBBr3で除去したのち、3とのペプチドカップリングにより環化前駆体9へと導いた。続いて、鍵反応である9Larockインドール合成による環化反応を検討した。アトロプ選択的な大員環構築に加え、9が臭化アリールをもつためヨウ化アリール選択的な反応条件が求められる。検討の結果、比較的低温(40 °C)でLarockインドール合成条件に9を付したところ、化学選択的に反応が進行し10およびatrop-10が3:1の生成比で得られた。図2に示すようにアルキンがパラジウムに挿入するとき、より歪みの小さい立体配座をとって環化することでアトロプ選択性が発現したと考えられている(論文SI参照)。10から化学選択的な脱保護と5および2とのペプチドカップリングを経てヘプタペプチド11を得た。次に、2度目のLarockインドール合成により15員環を形成し、11を二環式ペプチド12へと導いた。最後に、12の保護基を除去することで1の全合成を達成した。

図2.Darobactin Aの合成経路

 

以上、Larockインドール合成を駆使してアトロプ選択的にdarobactin Aの全合成を達成した。さすがのグラム陰性菌も、本研究の鮮やかな合成戦略そしてdarobactin Aの見事な爆沈機構に驚きの目を隠せないdaro?

参考文献

  1. Imai, Y.; Meyer, K. J.; Iinishi, A.; Favre-Godal, Q.; Green, R.; Manuse, S.; Caboni, M.; Mori, M.; Niles, S.; Ghiglieri, M.; Honrao, C.; Ma, X.; Guo, J. J.; Makriyannis, A.; Linares-Otoya, L.; Böhringer, N.; Wuisan, Z. G.; Kaur, H.; Wu, R.; Mateus, A.; Typas, A.; Savitski, M. M.; Espinoza, J. L.; O’Rourke, A.; Nelson, K. E.; Hiller, S.; Noinaj, N.; Schäberle, T. F.; D’Onofrio, A.; Lewis, K. A New Antibiotic Selectively Kills Gram-Negative Pathogens. Nature 2019,576, 459–464. DOI: 1038/s41586-019-1791-1
  2. Kaur, H.; Jakob, R. P.; Marzinek, J. K.; Green, R.; Imai, Y.; Bolla, J. R.; Agustoni, E.; Robinson, C. V.; Bond, P. J.; Lewis, K.; Maier, T.; Hiller, S. The Antibiotic Darobactin Mimics a β-Strand to Inhibit Outer Membrane Insertase. Nature 2021, 593, 125–129. DOI: 1038/s41586-021-03455-w
  3. Lin, Y.-C.; Schneider, F.; Eberle, K. J.; Chiodi, D.; Nakamura, H.; Reisberg, S. H.; Chen, J.; Saito, M.; Baran, P. S. Atroposelective Total Synthesis of Darobactin A. J. Am. Chem. Soc. 2022, 144, 14458–14462. DOI: 10.1021/jacs.2c05892
  4. Schröder, N.; Wencel-Delord, J.; Glorius, F. High-Yielding, Versatile, and Practical [Rh(III)Cp*]-Catalyzed Ortho Bromination and Iodination of Arenes. J. Am. Chem. Soc. 2012, 134, 8298–8301. DOI: 1021/ja302631j
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. Org. Proc. Res. Devのススメ
  2. 今年は Carl Bosch 生誕 150周年です
  3. 湿度によって色が変わる分子性多孔質結晶を発見
  4. 交互に配列制御された高分子合成法の開発と機能開拓
  5. 世界初!ラジカル1,2-リン転位
  6. (−)-Salinosporamide Aの全合成
  7. 第5回ICReDD国際シンポジウム開催のお知らせ
  8. 化学者のためのエレクトロニクス講座~代表的な半導体素子編

注目情報

ピックアップ記事

  1. ショッテン・バウマン反応 Schotten-Baumann Reaction
  2. サラ・オコナー Sarah E. O’Connor
  3. 第47回天然物化学談話会に行ってきました
  4. 遷移金属触媒がいらないC–Nクロスカップリング反応
  5. 2017年始めに100年前を振り返ってみた
  6. 硤合不斉自己触媒反応 Soai Asymmetric Autocatalysis
  7. ゴム状硫黄は何色?
  8. 「炭素-炭素結合を切って組み替える合成」テキサス大学オースティン校・Dong研より
  9. 有機化合物で情報を記録する未来は来るか
  10. 【技術系スタートアップ合同フォーラムのお知らせ】 ディープテックのリアル-業界ならでは魅力と社会課題解決への想い

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年10月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

理研の研究者が考える未来のバイオ技術とは?

bergです。昨今、環境問題や資源問題の関心の高まりから人工酵素や微生物を利用した化学合成やバイオテ…

水を含み湿度に応答するラメラ構造ポリマー材料の開発

第651回のスポットライトリサーチは、京都大学大学院工学研究科(大内研究室)の堀池優貴 さんにお願い…

第57回有機金属若手の会 夏の学校

案内:今年度も、有機金属若手の会夏の学校を2泊3日の合宿形式で開催します。有機金…

高用量ビタミンB12がALSに治療効果を発揮する。しかし流通問題も。

2024年11月20日、エーザイ株式会社は、筋萎縮性側索硬化症用剤「ロゼバラミン…

第23回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

持続可能な社会の実現に向けて、太陽電池は太陽光発電における中心的な要素として注目…

有機合成化学協会誌2025年3月号:チェーンウォーキング・カルコゲン結合・有機電解反応・ロタキサン・配位重合

有機合成化学協会が発行する有機合成化学協会誌、2025年3月号がオンラインで公開されています!…

CIPイノベーション共創プログラム「未来の医療を支えるバイオベンチャーの新たな戦略」

日本化学会第105春季年会(2025)で開催されるシンポジウムの一つに、CIPセッション「未来の医療…

OIST Science Challenge 2025 に参加しました

2025年3月15日から22日にかけて沖縄科学技術大学院大学 (OIST) にて開催された Scie…

ペーパークラフトで MOFをつくる

第650回のスポットライトリサーチには、化学コミュニケーション賞2024を受賞された、岡山理科大学 …

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー