[スポンサーリンク]

スポットライトリサーチ

発光材料を光で加工する~光と酸の二重刺激で材料加工~

[スポンサーリンク]

第432回のスポットライトリサーチは、東京大学大学院総合文化研究科・寺尾研究室 助教 正井宏先生にお願いしました。

寺尾研究室は

Molecular Architectonics(分子建築学)は,有機分子をまるで家屋の柱や壁,屋根にみたて建造物のように組み上げる技術を創出する学問で有り,当研究室学生はMolecular Architect(分子建築士)として,Molecular design(分子設計)とMolecular synthesis(分子合成)に参画し,nmスケールの機能性分子をどの位置に,どのように繋ぎ合わせるかを緻密に設計し,世界最小の有機建造物・電子素子を自在に創成することを目指します。(寺尾研ホームページより)

を研究理念に、優れた合成技術で、光化学、材料化学(高分子・超分子)方面でユニークな分子たちを報告している研究室です。合成技術だけでなく、応用方面にもアンテナを張り巡らせてるのが伺えます。

本研究では、光と酸、二種類の刺激、協奏的に切断可能な高分子材料の開発が行われています。

Go M. Russell, Takashi Kaneko, Saqura Ishino, Hiroshi Masai,* and Jun Terao*, “Transient Photodegradability of Photostable Gel Induced by Simultaneous Treatment with Acid and UV Light for Phototuning of Optically Functional Materials,” Advanced Functional Materials

一瞬、「あれ?それって分解がめんどくさくなるだけじゃない?」と思ってしまいますが、実用面から考えると、それが非常に有用であることがわかります。論文を読んで、なるほど!と唸りました。問題設定が本当に見事です。

この研究、東京大学よりプレスリリースされました。

それでは、正井宏先生にインタビューをしていきます!

 

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。】

光と酸を用いて、協働的に分解する高分子材料を開発した研究です。光で切断可能な高分子材料は、材料分解や光微細加工技術に応用されています。しかし、このような光応答材料は環境中の光に対しても徐々に反応することから、身の回りで材料を使うことは困難でした。特に、発光材料をはじめとする光学機能材料のように、積極的に光が照射される材料に光分解・光加工技術を組み合わせることは、本質的に不可能と考えられます。

そこで本研究では、塩化水素の存在下で光分解する新しい架橋剤を開発することで、光に安定な材料であるにもかかわらず、酸を用いた光分解を達成しました(図1)。また、酸を用いた光微細加工を行いつつ、加工後に酸を除くことで、光加工材料が発光材料として利用できることを示しました。

図1. 光と酸の協働分解性を示す白金錯体を架橋剤とするゲルの協働分解の概念図と、材料に対して光と酸を同時に作用させた際における分解挙動を示す写真

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。】

この研究の起点になったのは、酸の存在下で光分解する白金アセチリド錯体です。この錯体が協働的な分解反応を示すことは、別の研究を行っているときに偶然に見つかりました。クロロホルム中における365 nm励起の発光特性を観察する際、当時の学生さんがUVランプの操作を誤って254 nmを一瞬照射してしまい、改めて365 nmを照射すると、(254 nm照射で生成した微量の酸(?)と、365 nmの光で生じる分解反応によって)みるみる発光特性が変化した、というのが始まりでした。とはいえ、最初は何が起きているかはおろか、何に使えるのかもわからない時期が続きました。その後、高分子材料の架橋剤として使うという着想に至り、今の研究がスタートしました。研究が始まってからも、高分子材料の扱いや測定法の改良など、常に課題を抱えていたのですが、担当学生のラッセルさんが1つ1つ問題を解決し、完成に至りました。この研究の中で確立された材料の合成手順や測定方法における工夫は、今では研究室の高分子研究におけるGeneral Procedureになっています。

 

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?】

この研究対象は機能性材料なのですが、最も難しかった課題は、協働的な反応で生じた生成物の特定でした。研究の中で、メチル化シクロデキストリンによるロタキサン構造を使うことが、「キレのいい」反応につながることが判明したのですが、それによって生成物の特定は極めて困難になりました。メチル化シクロデキストリン誘導体は、極性・サイズといった分子の性質がシクロデキストリンに支配されるだけでなく、各種NMRのピークが山脈のように出てくるため、わずかな官能基の変化が観測しにくい化合物でした。そこで、未知の生成物をまず力業で単離し、二次元を含む各種NMRを駆使して、生成物を推定しました。最終的には、その化合物を別のルートで合成してNMRを比較することで、クロロアルキンが主生成物であることを決定しました。この材料の実験を担当したラッセルさん、石野さん、金子さんの、技術と知識と根気が一体となった結果で、誰一人欠けていても達成できなかった壁を越えた瞬間でした。

 

Q4. 将来は化学とどう関わっていきたいですか?】

原子や分子は、それ自体が物性や反応性を支配する一方で、そのような分子を少量添加するだけでも、分子的な振る舞いが材料や素材のようなマクロな性質にまで大きく影響することが多々あります。分子的な性質を幅広い物質スケールに相関させられる点を、合成化学としての魅力に感じており、その階層的な関係を設計できるような研究を進めていきたいです。

 

Q5. 最後に、読者の皆さんにメッセージをお願いします。】

今回の研究は想定していなかった実験結果から生まれたものでした。手違いではありつつも一瞬の変化を見逃さなかった学生さんの慧眼と、その変化を単なるミスとして埋葬せずに、報告・考察してくれた心意気の賜物でした。研究において、日々の積み重ねはもちろん重要ですが、その一方で新しい発見は意外と身近にあって、しかしながら些細なことで見落としてしまうような危ういものだということを、改めて実感しました。これを読んでくださった研究現場でご活躍の皆様も、是非新しい発見を掴んでください。

最後に、今回の研究に関してご議論・ご指導頂いた寺尾先生並びにスタッフの皆様、研究室の学生諸氏に感謝申し上げます。

 

【研究者の略歴】

 

 

 

 

 

正井 宏

東京大学大学院総合文化研究科・寺尾研究室 助教

2013年4月 〜 2016年3月 日本学術振興会特別研究員(DC1)
2016年3月 京都大学院工学研究科物質エネルギー化学専攻 博士後期課程 修了(辻研究室)
2016年4月 〜 2017年5月 東京大学大学院新領域創成科学研究科 日本学術振興会特別研究員(PD)(伊藤・横山研究室)
2017年6月 〜 2019年3月 東京大学大学院総合文化研究科 特任研究員(寺尾研究室)
2019年4月 〜 現職
2021年10月 〜 JSTさきがけ研究員

関連リンク

Avatar photo

Maitotoxin

投稿者の記事一覧

学生。高分子合成専門。低分子・高分子を問わず、分子レベルでの創作が好きです。構造が格好よければ全て良し。生物学的・材料学的応用に繋がれば尚良し。Maitotoxinの全合成を待ち望んでいます。

関連記事

  1. 3回の分子内共役付加が導くブラシリカルジンの網羅的全合成
  2. 常温・常圧で二酸化炭素から多孔性材料をつくる
  3. アスピリンから多様な循環型プラスチックを合成
  4. 気になるあの会社~東京エレクトロン~
  5. ルテニウム触媒を用いたcis選択的開環メタセシス重合
  6. 低投資で効率的な英語学習~有用な教材は身近にある!
  7. 二酸化炭素をほとんど排出せず、天然ガスから有用化学品を直接合成
  8. 脱芳香化反応を利用したヒンクデンチンAの不斉全合成

注目情報

ピックアップ記事

  1. 鉄触媒での鈴木-宮浦クロスカップリングが実現!
  2. Metal-Organic Frameworks: Applications in Separations and Catalysis
  3. シュプリンガー・ジャパン:生化学会書籍展示ケムステ特典!
  4. アズワンが第一回ケムステVプレミアレクチャーに協賛しました
  5. C–H活性化反応ーChemical Times特集より
  6. 条件最適化向けマテリアルズ・インフォマティクスSaaS 「miHub」のアップデート情報をご紹介 -分子構造を考慮した解析、目的変数の欠損値補完編-
  7. 深共晶溶媒 Deep Eutectic Solvent
  8. トリス(2,4-ペンタンジオナト)鉄(III) : Tris(2,4-pentanedionato)iron(III)
  9. Medical Gases: Production, Applications, and Safety
  10. 日宝化学、マイクロリアクターでオルソ酢酸メチル量産

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年10月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

第23回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

持続可能な社会の実現に向けて、太陽電池は太陽光発電における中心的な要素として注目…

有機合成化学協会誌2025年3月号:チェーンウォーキング・カルコゲン結合・有機電解反応・ロタキサン・配位重合

有機合成化学協会が発行する有機合成化学協会誌、2025年3月号がオンラインで公開されています!…

CIPイノベーション共創プログラム「未来の医療を支えるバイオベンチャーの新たな戦略」

日本化学会第105春季年会(2025)で開催されるシンポジウムの一つに、CIPセッション「未来の医療…

OIST Science Challenge 2025 に参加しました

2025年3月15日から22日にかけて沖縄科学技術大学院大学 (OIST) にて開催された Scie…

ペーパークラフトで MOFをつくる

第650回のスポットライトリサーチには、化学コミュニケーション賞2024を受賞された、岡山理科大学 …

月岡温泉で硫黄泉の pH の影響について考えてみた 【化学者が行く温泉巡りの旅】

臭い温泉に入りたい! というわけで、硫黄系温泉を巡る旅の後編です。前回の記事では群馬県草津温泉をご紹…

二酸化マンガンの極小ナノサイズ化で次世代電池や触媒の性能を底上げ!

第649回のスポットライトリサーチは、東北大学大学院環境科学研究科(本間研究室)博士課程後期2年の飯…

日本薬学会第145年会 に参加しよう!

3月27日~29日、福岡国際会議場にて 「日本薬学会第145年会」 が開催されま…

TLC分析がもっと楽に、正確に! ~TLC分析がアナログからデジタルに

薄層クロマトグラフィーは分離手法の一つとして、お金をかけず、安価な方法として現在…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー