[スポンサーリンク]

スポットライトリサーチ

電子を閉じ込める箱: 全フッ素化キュバンの合成

[スポンサーリンク]

 

第 423 回のスポットライトリサーチは、東京大学 工学系研究科 化学生命工学専攻の 杦山 真史 (すぎやま・まさふみ) さんにお願いしました。

杦山さんの所属されるフッ素有機化学研究室は、フッ素の性質を活かした新規合成反応や、機能性材料・ドラッグデリバリーシステムの開発など、他にはないユニークな研究を展開されています。

SNS 上などでは論文出版・プレスリリース後さっそく話題を攫っていますので既にご存知の方も多いと思いますが、今回、杦山さんらの研究グループは立方体分子キュバンの各頂点をすべてフッ素化した「全フッ素化キュバン」の合成に成功し、その構造的特性を明らかにされました。以下は Science 誌の abstract です。

Electron in a cube: Synthesis and characterization of perfluorocubane as an electron acceptor

Masafumi Sugiyama, Midori Akiyama, Yuki Yonezawa, Kenji Komaguchi, Masahiro Higashi, Kyoko Nozaki, Takashi Okazoe.
Science, 2022, 377(6607), 756-759. DOI: 10.1126/science.abq0516.

Fluorinated analogs of polyhedral hydrocarbons have been predicted to localize an electron within their cages upon reduction. Here, we report the synthesis and characterization of perfluorocubane, a stable polyhedral fluorocarbon. The key to the successful synthesis was the efficient introduction of multiple fluorine atoms to cubane by liquid-phase reaction with fluorine gas. The solid-state structure of perfluorocubane was confirmed using x-ray crystallography, and its electron-accepting character was corroborated electrochemically and spectroscopically. The radical anion of perfluorocubane was examined by matrix-isolation electron spin resonance spectroscopy, which revealed that the unpaired electron accepted by perfluorocubane is located predominantly inside the cage.

キュバンといえば変わった形の分子の代表格として化学界隈では有名で、しかもそのひずみの大きさに関わらず合成可能な分子として各種研究対象になっています。例えばオクタニトロキュバンは実用化されてはいないものの最強レベルの爆薬になると予測されていますし、キュバン自体はベンゼンと類似した分子サイズのため、医薬品合成におけるバイオアイソスターとしての利用も試みられています。
今回はじめて合成された全フッ素化キュバンは、その構造的な面白さもさることながら、電子を多面体内部に閉じ込めるという興味深い性質を有しており、構造有機化学や機能性材料開発の発展に大きなインパクトを与えるものだと言えます。

現場で研究を指揮された、現・京都大学大学院の秋山みどり先生より、杦山さんの人となりについてコメントを頂戴しました!

杦山さんは,私の特任助教2年目に研究室に配属されました。4年生時は別のテーマに取り組んでいましたが,当時から有機化学が大好きで,積極的に勉強し,物事をよく考え,自分が納得してから実験をする芯の通った研究者でした。そのころ私は全フッ素化キュバンを作りたいと思い立ち,ひっそりと予備実験をしていました。このテーマにはとても思い入れがあり,ぜひ杦山さんに進めてほしいと思っていたのですが,一つ大きな問題がありました。杦山さんは常々「全合成がやりたくて有機化学の学科に入った。対称性が低く複雑な構造の分子がかっこいい!」と言っていたのです。こんなに相性の悪い分子があるでしょうか。私は毎日 Gaussview で表示した究極に対称性の高い構造をクルクル回して,ため息をついていました。最終的にオファーを出し,一晩考えた結果「やります」と答えてくれた時は,心底ホッとしました。

その後の杦山さんの頑張りについては本人のコメントの通りです。0.5mg の固体が入ったミクロチューブを見せにきてくれた時,X線を解析して C と F 2つずつのみ (!) が見えた時,駒口先生から綺麗に 9 本に分裂した ESR スペクトルが送られてきた時の感動は一生忘れません。しかしそれと同じくらいに,杦山さんと一緒に研究する日常が楽しく Exciting なものでした。面白い論文や週末に新しく勉強したことなど,私が教えてもらうことの方が (圧倒的に) 多いですし,研究室の他のメンバーの研究にも前向きで建設的なコメントをしてくれます。これから色々な経験を積んで,スケールの大きい研究者になると期待しています。

それでは、インタビューをお楽しみください!

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

全ての頂点にフッ素原子が結合した立方体型分子「全フッ素化キュバン」の合成に成功し、その性質として炭素骨格内部に電子を受容することを実験的に明らかにしました。

全フッ素化キュバンは、C-F 結合の配向に由来して分子内部に低準位の空軌道を有すると考えられており、これまで電子親和力などに関する理論研究が行われてきました。しかし、官能基変換の手法に乏しいキュバン骨格の全ての頂点をフッ素化する手法が存在しなかったため、これまで実際に合成されたことはありませんでした。

そこで我々は、AGC株式会社によって開発されたフッ素ガスによる炭化水素全フッ素化技術 (PERFECT法: PERFluorination of an Esterified Compound then Thermolysis) を用いることで、一度に複数のフッ素原子を効率的に導入できると考え全フッ素化キュバンの合成に挑戦いたしました。

あらかじめエステル部位にフッ素原子が多数導入されたキュバン誘導体をフッ素化することで、キュバン骨格に7個のフッ素原子を導入することに成功し、さらに数段階の変換を経て全フッ素化キュバンの合成・単離・構造解析に成功しました。

予測されていた分子骨格内部に電子を受容した状態は、γ線を用いて発生させたラジカルアニオンを低温マトリックス単離 ESR 法によって観測することで明らかにしました。

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

合成方法の確立とラジカルアニオンの捕捉に多くの時間を要しました。

合成スキームを見るとフッ素ガスを用いたラジカル反応が目を引きますが、意外にもこちらの反応は初期の検討から目的物が得られることが判明しており、いくらか条件を最適化しましたがそこまで工夫は必要ありませんでした。一方で、部分フッ素化キュバンの脱プロトン化及び求電子的フッ素化剤との反応には多くの時間を費やしました。テーマをいただいた当初はヘキサフルオロキュバンまでは得られており「2か月で全フッ素化体まで合成できる」と息巻いていたのですが、実際は単離までに1年半程度かかりました。これは19F NMR において 6フッ素化体は −178 ppm にピークが観測されるのに対し、全フッ素化されることで低磁場シフトしたシングレットが見えると誤った予想していたためでした。それまでの実験データをよく見直したところ多くの条件で −198 ppm にシングレットのピークが観測されていることを見いだし、そのピークの化合物が多く得られる条件で単離を試みたところ、目的とする全フッ素化キュバンが得られていることがわかりました。

ラジカルアニオンの捕捉に関しては先生方の執念という思い出があります。この研究においてラジカルアニオンが観測できるか否かは非常に大きなウェイトを占めていますが、単離後に1年程度はラジカルアニオンの観測ができませんでした。私自身は合成をメインとしてひとまず論文を投稿するつもりだったのですが、やはりラジカルアニオンの単離をあきらめきれず最後の手段としてマトリックス単離ESR測定の共同研究を依頼しました。通常の測定条件に十分なサンプル量を用意できずこの測定でもすぐには目的のスペクトルを得られなかったのですが、駒口先生のご尽力のもと最終的には予測通りの非常にシャープなスペクトルを得ることができ、論文全体の完成度も大きく向上したと思います。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

研究を通じて困難な場面はいくつかありましたが、途中で半年以上フッ素化反応を実施できない期間があったことが一番大変でした。これは研究室の移転とコロナウイルス感染症拡大が重なったためです。

フッ素化装置が使えない状況では研究を進めることができないため、移転前までに作った 20 mg ほどの前駆体 (ヘキサフルオロキュバン) をごく微量ずつ使い半年ほど条件検討を行っていました。

昇華性が高く反応後の溶媒留去にも苦労する化合物でしたが、なんとか 0.5 mg の目的物の単離に (ほぼ奇跡的に) 成功し、さらにその固体から X 線構造解析を行える単結晶を得ることにも成功しました。単離に成功した実験は、原料を全て使う一発勝負の状況でしたのですべての操作を慎重に行った記憶があります。

(左) 初めて単離に成功した0.5 mgの全フッ素化キュバン(昇華精製により得られた)
(右) X線構造解析に用いた単結晶

Q4. 将来は化学とどう関わっていきたいですか?

有機化学にずっと携わること・有機化学を続けて飯を食えるような人になることを目標にしています。新しい化学に触れることが好きなので、いつでも最新の論文を読めるような環境に身を置きたいです。

加えて今回の論文を発表したことで、将来的にはこの分子を超えるような分子を自分でデザイン・合成してみたい気持ちを強く持つようになりました。いつまでも全フッ素化キュバンの人と言われないように頑張ります。

Q5. 最後に、読者の皆さんにメッセージをお願いします!

最後までお読みいただきありがとうございました。

この研究に関して学会発表をすると、ありがたいことに毎回多くの先生方からご意見をいただきます。当然厳しい意見をいただくこともあるのですが、その都度日々の思考のレベルが上がり、得られたデータを多面的に見ることできるようになりました (今でも私の頭の中では何人もの仮想○○先生が意見をくださります(笑))。このように振り返ってみると私自身がこの研究を発展させたというよりは、この分子や周りの方々に私自身が成長させられたという感覚があります。こんな素敵な分子と出会えたことに感謝しています。

一方で、この分子自体のポテンシャルは私の想像が及ばないくらいもっともっと高いと考えています。既に何人かの先生方からお声かけいただいておりますが、サンプル提供等、共同研究にお誘いいただけましたら是非ともご連絡いただければと思います (責任著者: 京都大学秋山先生までご連絡いただけると幸いです)。

最後になりますが、本研究を二人三脚で進めてくださった秋山みどり先生 (現京都大学) に感謝申し上げます。また、共著者である代表共同研究員の岡添先生 (AGC株式会社)、指導教官の野崎京子先生、共同研究者の米澤さん (東大工卒)、マトリックス単離ESR測定を実施いただいた駒口先生 (広島大学)、量子化学計算に関してアドバイスをいただいた東先生 (京都大学) に感謝申し上げます。本文謝辞にも記載させていただきましたが、本研究遂行および論文執筆に際して非常に多くの先生方にアドバイスをいただいたことも併せて御礼申し上げます。また、研究紹介の機会をくださった Chem-Station スタッフの皆様にも心から感謝申し上げます。

関連リンク

既にいくつかの媒体で本研究を取り上げていただきましたのでこの場をお借りして紹介させていただきます。

IN THE PIPELINE by Dr. Derek Lowe
Perfluorocubane Is (As You Would Expect) Weird
https://www.science.org/content/blog-post/perfluorocubane-you-would-expect-weird

And we got to read about it without ever having to work with any fluorine ourselves! It’s a win-win.
今後もwin-winな化合物を作っていきたいです。

Chemistry Wednesday 様
先週の面白い論文 #26
日本語にて詳しく解説いただきました。

That Chemist 様
The First Real Life Pictures EVER of Perfluorocubane
海外の YouTuber ですが直接メールでコンタクトがあり、非常に丁寧な解説動画を作っていただきました。既に5万回以上再生されており、この動画を見てコンタクトを取ってくれる海外の研究者が沢山います。英語 & YouTube の影響力を知りました。

研究者の略歴

名前: 杦山 真史 (すぎやま まさふみ)
所属: 東京大学工学系研究科化学生命工学専攻フッ素有機化学研究室
研究テーマ: フッ素化キュバンの合成と物性
略歴:
2015年 3月 神奈川県立湘南高校 卒業
2019年 3月 東京大学工学部化学生命工学科 (フッ素有機化学研究室, 野崎京子教授)  卒業
2019年―現在 統合物質科学国際卓越大学院コース在籍 
2021年 3月 東京大学工学系研究科化学生命工学専攻 (同上) 修士課程修了
2021年 4月―現在 東京大学工学系研究科化学生命工学専攻 (同上) 博士課程
2021年 4月―現在 日本学術振興会特別研究員 DC1

 

杦山さん、秋山先生ほか、共著者の皆様方、インタビューにご協力いただきありがとうございました!
それでは、次回のスポットライトリサーチもお楽しみに!

関連書籍

[amazonjs asin=”4807909576″ locale=”JP” title=”構造有機化学: 基礎から物性へのアプローチまで”]
Avatar photo

DAICHAN

投稿者の記事一覧

創薬化学者と薬局薬剤師の二足の草鞋を履きこなす、四年制薬学科の生き残り。
薬を「創る」と「使う」の双方からサイエンスに向き合っています。
しかし趣味は魏志倭人伝の解釈と北方民族の古代史という、あからさまな文系人間。
どこへ向かうかはfurther research is needed.

関連記事

  1. 機能を持たせた紙製チップで化学テロに備える ―簡単な操作でサリン…
  2. タンパク質を華麗に模倣!新規単分子クロリドチャネル
  3. ヒドロゲルの新たな力学強度・温度応答性制御法
  4. 論文をグレードアップさせるーMayer Scientific E…
  5. システインから無機硫黄を取り出す酵素反応の瞬間を捉える
  6. 「タキソールのTwo phase synthesis」ースクリプ…
  7. カルベン転移反応 ~フラスコ内での反応を生体内へ~
  8. スタチンのふるさとを訪ねて

注目情報

ピックアップ記事

  1. 第47回天然有機化合物討論会
  2. 天然のナノチューブ「微小管」の中にタンパク質を入れると何が起こる?
  3. バーゼル Basel:製薬・農薬・化学が集まる街
  4. カスケードDA反応による(+)-Pedrolideの全合成ダダダダ!
  5. 従来のペプチド合成法に替わるクリーンなペプチド合成法の確立を目指して―有機電解反応を利用したペプチド合成法の開発―
  6. ケムステ版・ノーベル化学賞候補者リスト【2017年版】
  7. 日本薬学会第144回年会「有機合成化学の若い力」を開催します!
  8. リンダウ会議に行ってきた③
  9. フライデーハーバー研究所
  10. ついに成功した人工光合成

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年10月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

第23回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

持続可能な社会の実現に向けて、太陽電池は太陽光発電における中心的な要素として注目…

有機合成化学協会誌2025年3月号:チェーンウォーキング・カルコゲン結合・有機電解反応・ロタキサン・配位重合

有機合成化学協会が発行する有機合成化学協会誌、2025年3月号がオンラインで公開されています!…

CIPイノベーション共創プログラム「未来の医療を支えるバイオベンチャーの新たな戦略」

日本化学会第105春季年会(2025)で開催されるシンポジウムの一つに、CIPセッション「未来の医療…

OIST Science Challenge 2025 に参加しました

2025年3月15日から22日にかけて沖縄科学技術大学院大学 (OIST) にて開催された Scie…

ペーパークラフトで MOFをつくる

第650回のスポットライトリサーチには、化学コミュニケーション賞2024を受賞された、岡山理科大学 …

月岡温泉で硫黄泉の pH の影響について考えてみた 【化学者が行く温泉巡りの旅】

臭い温泉に入りたい! というわけで、硫黄系温泉を巡る旅の後編です。前回の記事では群馬県草津温泉をご紹…

二酸化マンガンの極小ナノサイズ化で次世代電池や触媒の性能を底上げ!

第649回のスポットライトリサーチは、東北大学大学院環境科学研究科(本間研究室)博士課程後期2年の飯…

日本薬学会第145年会 に参加しよう!

3月27日~29日、福岡国際会議場にて 「日本薬学会第145年会」 が開催されま…

TLC分析がもっと楽に、正確に! ~TLC分析がアナログからデジタルに

薄層クロマトグラフィーは分離手法の一つとして、お金をかけず、安価な方法として現在…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー