[スポンサーリンク]

スポットライトリサーチ

in-situ放射光X線小角散実験から明らかにする牛乳のナノサイエンス

[スポンサーリンク]

第425回のスポットライトリサーチは、高エネルギー加速器研究機構 物質構造科学研究所(物構研)の高木 秀彰 (たかぎ ひであき)助教にお願いしました。

物構研では、電子加速器から発生する放射光や陽電子、 陽子加速器が生み出す中性子やミュオンという4種のビームを利用し、原子レベルから高分子、生体分子レベルにいたる幅広いスケールの物質構造と機能を総合的に研究しています。本プレスリリースは牛乳の構造についてです。⽜乳の主成分はカゼインタンパク質であり、このタンパク質はおよそ100 nmのミセル状の構造を形成しています。電子顕微鏡観察を始め様々な最新の技術・装置を使ってカゼインミセルの構造を特定するための研究が行われていますが、現代でも詳細な構造は未解明で科学的な論争に決着はついていません。先行研究では、放射光 X 線小角散乱(Small-Angle X-ray Scattering, SAXS)法を利用してカゼインミセルの構造を研究し、10 ナノメートル程度の水のドメインが存在するモデル(水ドメイン内包モデル)を見出しました。そして本研究では10-40℃の温度範囲で牛乳のin-site測定を行い、ミセル構造が温度に対して敏感にかつダイナミックに変化することを解明しました。

この研究成果は、「Food Chemistry」誌およびプレスリリースに公開されています。

Temperature dependence of the casein micelle structure in the range of 10–40 °C: An in-situ SAXS study

Hideaki Takagi, Tomoki Nakano, Takayoshi Aoki and Morimasa Tanimoto

Food Chem. 393 2022, 133389

DOI: doi.org/10.1016/j.foodchem.2022.133389

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

牛乳は高校の化学の教科書に記載されるほど典型的なコロイド粒子ですが、実は粒子(約100nmサイズのミセル)の内部構造に関しては現代でも未解明で、長年論争が続いています。我々は試料を非破壊でそのまま測定できるX線小角散乱法(Small Angle X-ray Scattering, SAXS)に着目しました。様々な構造モデルで計算した結果、SAXSプロファイルを最も合理的に説明できるのがミセル内に10nm程度の大きさの水ドメインを内包したミセルとなり、我々は「水ドメイン内包モデル」を提唱しています(図1)[1]。今回の実験では、温度がかかった状態でミセル内部がどのように変化するのかをin-situ SAXS実験により明らかにしました。温度はタンパク質の熱変性を起こさない10-40℃間で加熱冷却実験を行いました。実験で得られたSAXSプロファイルを水ドメイン内包モデルでfittingし、得られたfittingパラメータを比較しました。その結果、ミセルサイズは温度に対して変化せず、水ドメインは加熱によって膨張しました。牛乳の重要な栄養素であるカルシウムを含むリン酸カルシウムのナノクラスターは、加熱によって数密度が増加することが分かりました。冷却すると全て元に戻りました(図2)。10-40℃間の温度変化でミセル内部の構造が劇的に変化していることを解明したのは本研究が初めてです[2]。

図1 牛乳中のカゼインミセルと我々の研究チームが提唱する水ドメイン内包モデル

図2 10-40℃間のミセル内部の構造変化

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

明確な特徴のないSAXSプロファイルから構造モデルを推察するのがSAXSの専門家の腕の見せ所だと思います。ミセルの電子顕微鏡写真や多くの物理化学的分析に基づいたミセルモデルから計算モデルを組み立て、最も合理的なモデルを導き出すのには苦労しました。Fittingが合っても、モデルそのものが酪農科学の専門家から見て非現実的な場合もあるので、酪農科学専門家の共同研究者とは常に綿密に議論を行いました。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

この研究も最も難しかった点は実験結果の解釈です。私は小角散乱の専門家でSAXSプロファイルの分析や解釈には長けています。一方で、牛乳は歴史の長い研究分野で、門外漢の私が簡単に理解できるほど甘い分野ではありません。また普段使用しない、分野に特有な物性値の取り扱いにも扱いにも苦労しました。実験結果の考察や現象の説明には酪農科学の専門家である共同研究者の方々なしでは到底できませんでした。特に鹿児島大学名誉教授である青木先生には数多くのご助言をいただき、先生なしではこの研究は成立しないと言っても過言ではありません。

Q4. 将来は化学とどう関わっていきたいですか?

放射光や中性子といった量子ビームは食品科学と非常に相性がいいと個人的には思っています。今後は食品分野の量子ビーム利用の推進などにも力を入れていきたいと思います。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

最も身近な食品の一つである牛乳の不思議さに気づいてもらえたらうれしいです。牛乳はナノサイズの構造体を含み、それらが温度などに対して敏感に変化するので、ナノサイエンスともとらえることができます。ここでは紙面の関係上牛乳だけに言及しましたが、牛乳が分からないので、当然その加工品であるチーズやヨーグルトも構造的には未解明な部分が多いです。放射光X線小角散乱実験は時間分解実験も得意なので、今後はチーズやヨーグルトへの変化していく過程の時分割実験なども行っていき、チーズやヨーグルトの謎の解明にも挑戦していく予定です。

最後になりますが、共同研究者である南日本酪農協同株式会社の中野智木博士、山梨大学名誉教授で東京聖栄大学教授の谷本守正博士、鹿児島大学名誉教授の青木孝良博士にこの場を借りて感謝申し上げます。この研究は日本酪農科学会のミルクサイエンス研究助成のご支援をいただき実施いたしました。

参考文献

[1] Takagi, H., Nakano, T., Shimizu, N., Aoki, T. and Tanimoto, M., Milk Science, 71, 10-22 (2022)

[2] Takagi, H., Nakano, T., Aoki, T. and Tanimoto, M., Food Chem. 393, 133389 (2022).

研究者の略歴

高木秀彰(たかぎ ひであき)

高エネルギー加速器研究機構 物質構造科学研究所

研究テーマ:食品科学、コロイド科学、小角散乱

関連リンク

Avatar photo

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. 触媒的プロリン酸化を起点とするペプチドの誘導体化
  2. Happy Friday?
  3. 表面酸化した銅ナノ粒子による低温焼結に成功~銀が主流のプリンテッ…
  4. 自己治癒するセラミックス・金属ーその特性と応用|オンライン|
  5. 本当の天然物はどれ?
  6. 有機反応を俯瞰する ーシグマトロピー転位
  7. スローン賞って知っていますか?
  8. 第5回ICReDD国際シンポジウム開催のお知らせ

注目情報

ピックアップ記事

  1. 金属イオン認識と配位子交換の順序を切替えるホスト分子
  2. 石油化学大手5社、今期の営業利益が過去最高に
  3. Wiiで育てる科学の心
  4. 「化学研究ライフハック」シリーズ 2017版まとめ
  5. アニリン類のC–N結合に不斉炭素を挿入する
  6. マテリアルズ・インフォマティクスに欠かせないデータ整理の進め方とは?
  7. ビス[α,α-ビス(トリフルオロメチル)ベンゼンメタノラト]ジフェニルサルファー : Bis[alpha,alpha-bis(trifluoromethyl)benzenemethanolato]diphenylsulfur
  8. 2011年文化功労者「クロスカップリング反応の開拓者」玉尾皓平氏
  9. さよならGoogleリーダー!そして次へ…
  10. Branch選択的不斉アリル位C(Sp3)–Hアルキル化反応

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年10月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

【スポットライトリサーチ】汎用金属粉を使ってアンモニアが合成できたはなし

Tshozoです。 今回はおなじみ、東京大学大学院 西林研究室からの研究成果紹介(第652回スポ…

第11回 野依フォーラム若手育成塾

野依フォーラム若手育成塾について野依フォーラム若手育成塾では、国際企業に通用するリーダー…

第12回慶應有機化学若手シンポジウム

概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大学理工学部・…

新たな有用活性天然物はどのように見つけてくるのか~新規抗真菌剤mandimycinの発見~

こんにちは!熊葛です.天然物は複雑な構造と有用な活性を有することから多くの化学者を魅了し,創薬に貢献…

創薬懇話会2025 in 大津

日時2025年6月19日(木)~6月20日(金)宿泊型セミナー会場ホテル…

理研の研究者が考える未来のバイオ技術とは?

bergです。昨今、環境問題や資源問題の関心の高まりから人工酵素や微生物を利用した化学合成やバイオテ…

水を含み湿度に応答するラメラ構造ポリマー材料の開発

第651回のスポットライトリサーチは、京都大学大学院工学研究科(大内研究室)の堀池優貴 さんにお願い…

第57回有機金属若手の会 夏の学校

案内:今年度も、有機金属若手の会夏の学校を2泊3日の合宿形式で開催します。有機金…

高用量ビタミンB12がALSに治療効果を発揮する。しかし流通問題も。

2024年11月20日、エーザイ株式会社は、筋萎縮性側索硬化症用剤「ロゼバラミン…

第23回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー