[スポンサーリンク]

スポットライトリサーチ

液晶の薬物キャリアとしての応用~体温付近で相転移する液晶高分子ミセルの設計~

[スポンサーリンク]

第431回のスポットライトリサーチは、関西大学大学院 理工学研究科 総合理工学専攻 先端高分子化学研究室(宮田研究室)の井上 泰彰(いのうえ やすあき)さんにお願いしました。

宮田研究室では、医療・環境分野を革新するスマートポリマーの創製を目指しており、具体的には標的分子やタンパク質,DNAを見分けて膨潤・収縮する分子応答性ゲルの合成やナノからマイクロサイズのスマートゲルやミセル,カプセルの作製、体温付近で液晶-等方相転移する新規な液晶高分子の合成、光や生体分子に応答して形や固さが変わるスマートポリマー,ゾルからゲルへと相転移するスマートポリマーの合成などを行っております。

本プレスリリースの研究成果はナノサイズの液晶高分子材料についてです。ドラッグデリバリーシステム(DDS)は、必要な場所に必要な時間だけ必要な量の薬物を送達するシステムですが、高分子ミセルがそのキャリアとして精力的に研究されています。しかし、一般的な高分子ミセルは外部刺激によって自己集合構造が解離するため、可逆的な応答を付与するためには架橋構造などの導入が必要になります。一方液晶は、固体のような規則的な構造と液体のような流動性を併せ持っており、外部電場や温度などによりその動的な規則構造が変化します。脂質二重層は液晶状態の生体膜であり、分子やイオンの選択透過性に重要な役割を果たしていますが、液晶を医療分野への応用を試みた研究はほとんど報告されていませんでした。そこで本研究グループでは、体温付近で相転移する両親媒性液晶高分子を合成し、水中で自己集合させることにより液晶高分子ミセルを形成させました。そして、液晶高分子ミセルの内部にモデル薬物を内包させ、体温付近の温度を介して可逆的な薬物放出の ON–OFF 制御に成功しました。

この研究成果は、「ACS Applied Materials & Interfaces」誌に掲載され、 Supplementary Cover Art にも選出されました。また関西大学プレスリリースに発表されました。

Amphiphilic Liquid Crystalline Polymer Micelles That Exhibit a Phase Transition at Body Temperature

Yasuaki Inoue, Kazuhito Takada, Akifumi Kawamura, and Takashi Miyata

ACS Appl. Mater. Interfaces 2022, 14, 28, 31513–31524

DOI: doi.org/10.1021/acsami.2c00592

研究室を主宰されている宮田 隆志 教授より井上さんについてコメントを頂戴いたしました!

井上泰彰君を一言で表現すると,“スマート”です。外見もスマートなのですが,何でもスマートにこなしてしまいます。私どもの研究室では,医療や環境分野に貢献できる“スマートポリマー”(刺激応答性高分子)を設計していますが,井上君はまさにこの英語で言うところの“smart”という単語がふさわしい学生です。研究室ではゲルや膜,微粒子に関する研究が中心で,液晶高分子に関する研究は少数精鋭の部隊となっています。最近では様々な液晶高分子も設計できますが,それでも目的とする液晶高分子を得るためには何週間もかかります。さすがのスマートな井上君も体温付近に液晶-等方相転移点を有する両親媒性液晶高分子の合成には半年ぐらいを費やしました。井上君のテーマは,この液晶高分子を合成してからスタート地点に立ち,ようやくミセル形成やその構造評価,機能評価が可能になるという“スマート”とは対極の“泥臭い”テーマです。しかし,井上君はこの泥臭いテーマでもスマートに目的を達成してくれました。もちろん,研究には山あり谷ありで,見えないところでの努力は人並み以上であったと思います。是非とも博士後期課程に進学して欲しい学生でしたが,その高い能力によってあっさりと(これも人並み以上の努力はあったと思いますが)内定を勝ち取ってしまいました。会社のご厚意もあり,就職後に社会人ドクターとして研究を続けることができ,博士号取得に向けて努力を重ねています。ちなみに,井上君は学生時代にスターバックスでアルバイトしており,そこでも“ブラックエプロン”の称号を得ていました。残念ながら,私は井上君が入れたコーヒーを飲んだことはありませんが,博士号取得の際には是非ともコーヒーで乾杯したいと思います。企業でも優れた研究を行い,人々の役に立つ製品や技術を世に出してくれると期待しています。

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

“液晶”の構造変化を利用して可逆的に薬物放出を制御できる薬物キャリアを世界で初めて設計しました。

ドラッグデリバリーシステムは,必要な場所に,必要な時間だけ,必要な量の薬物を届ける技術であり,治療効果の増大や副作用の低減などが可能になります。体内で薬物を運ぶ薬物キャリアとして,両親媒性高分子から形成される高分子ミセルが注目されていますが,一般に温度やpHなどの外部刺激に応答して崩壊するため,可逆的に薬剤放出を制御することは困難でした。

そこで私たちは外部刺激に応答して分子の配向性が変化する液晶高分子に着目しました。液晶高分子は液晶性を発現するメソゲンを分子内に持ち,相転移温度(TNI)を介して配向性の高い液晶相から配向性の低い等方相へ可逆的に相転移します。生体膜のような動的な規則構造を持つにもかかわらず,液晶高分子を医療分野に応用した例はありませんでした。

今回の研究では,ヒドロシリル化反応により疎水性のメソゲンと親水性のオリゴエチレングリコール(OEG)を柔軟なポリシロキサン主鎖に導入することにより体温付近にTNIをもつ両親媒性液晶高分子(LCP-g-OEG)を合成しました。水中で調製した液晶高分子ミセルはTNI以上でも崩壊せず,粒径130 nmの球状構造を維持することがわかりました。薬物放出挙動を検討した結果,体温以下では液晶相で薬物を内部に保持し,体温以上で等方相となって薬物を放出することがわかりました。さらに,TNIを介して薬剤放出のON-OFFを可逆的に制御することに成功しました。(Fig. 1)

Fig.1. 液晶高分子ミセルの調製と温度に応答した可逆的な薬物放出制御

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

宮田研では,配属時に学生自ら研究テーマを選択します。当研究室では高分子ゲルや膜の研究が主流ですが,私は医療分野の新しい材料研究がしたいという思いから,液晶の医療応用を目指す本研究テーマを選択しました。医療応用を目指すためには体温付近で構造変化を引き起こす液晶高分子を合成することが必須でした。相転移温度はメソゲンの導入量によって調節することができますが,初めの頃はどのくらいの導入量でどのくらいの相転移温度になるのか見当がつきませんでした。そのため,メソゲン導入量を微調整しながら何度も両親媒性液晶高分子の合成に取り組みました。気づけば半年ほど合成に費やしていましたが,示差走査熱量測定(DSC)と偏光顕微鏡(POM)で相転移温度が体温付近であることを確認できたときはとても嬉しかったです。(Fig. 2)

Fig. 2. 偏光顕微鏡を用いた両親媒性液晶高分子の相転移挙動の観察

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

ミセル状態の相転移挙動を観察することに苦労しました。バルク状態の相転移温度はDSCやPOMで測定できますが,ナノ構造を形成した液晶高分子の相転移温度を見積もることは前例がなく,非常に難しいことでした。そこで,ミセルの薬物放出挙動からアレニウスプロットを用いて活性化エネルギー(Ea)を算出しました。Eaが大きいほど薬物放出の温度依存性が大きいと判断できるため,液晶相と等方相における薬物放出メカニズムの違いを考察できると考えたのです。その結果,EaはDSCやPOMで観察した相転移温度付近で綺麗に屈曲しました。実際にデータからグラフを描いた時の感動は忘れられません。(Fig. 3)液晶高分子がナノ構造を形成してもバルク状態と同等の温度域で相転移することを証明できた瞬間であったのと同時に,科学の面白さを感じた瞬間でもありました。

Fig.3. 液晶高分子ミセルの薬物放出挙動に及ぼす温度の影響

Q4. 将来は化学とどう関わっていきたいですか?

大学・大学院で学んだ高分子化学や界面化学は幅広い分野に応用されている学問であり,会社での研究業務において私の強みになっています。これまで培った知識を活かして社会を豊かにする技術や製品を作り出したいと思っています。また,近年はSDGsなどの観点から環境問題への関心が高まっているように感じます。ますます社会と環境の豊かさの両立が求められると思いますので,環境問題を解決できるような研究を行っていきたいです。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

ここまでお読みいただき,誠にありがとうございます。

学部生の頃から見ていた「ケムステ」に寄稿させていただくことができ,大変嬉しく思います。私は本研究に学部生の頃から取り組んできましたが,大学院修了までに論文化することは叶いませんでした。「自分で論文化したい」と博士後期課程への進学を決断するほど思い入れのある研究です。この記事をきっかけにして,たくさんの人に本論文と関連論文(J. Membrane Sci. 2019, 588, 117213)に目を通していただき,スマートポリマーとしての液晶高分子の可能性を知っていただければ大変嬉しく思います。

最後に,本研究を推進するにあたり,熱心なご指導・ご協力を賜りました宮田先生,河村先生,研究室の皆様,そしていつも後押ししてくれる両親にこの場をお借りして心より感謝申し上げたいと思います。

研究者の略歴

[名前]

井上 泰彰(いのうえ やすあき)

[所属(大学・学部・研究室)]

関西大学大学院 理工学研究科 総合理工学専攻 博士課程後期 先端高分子化学研究室

[略歴]

2015年3月 関西大学 化学生命工学部 卒業

2017年3月 関西大学大学院 理工学研究科 化学生命工学専攻 博士課程前期 修了

2017年4月〜現在 花王株式会社

2020年9月〜現在 関西大学大学院 理工学研究科 総合理工学専攻 博士課程後期

関連リンク

Avatar photo

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. ぱたぱた組み替わるブルバレン誘導体を高度に置換する
  2. 安定なケトンのケイ素類縁体“シラノン”の合成 ケイ素—酸素2重結…
  3. 新生HGS分子構造模型を試してみた
  4. サリンを検出可能な有機化合物
  5. 第47回ケムステVシンポ「マイクロフローケミストリー」を開催しま…
  6. 日本化学会 第104春季年会 付設展示会ケムステキャンペーン P…
  7. ESIPTを2回起こすESDPT分子
  8. タミフルをどう作る?~インフルエンザ治療薬の合成~

注目情報

ピックアップ記事

  1. 有機色素の自己集合を利用したナノ粒子の配列
  2. 第94回日本化学会付設展示会ケムステキャンペーン!Part I
  3. 自由研究にいかが?1:ルミノール反応実験キット
  4. シリカゲルはメタノールに溶けるのか?
  5. ワサビ辛み成分受容体を活性化する新規化合物
  6. カラッシュ・ソスノフスキ-酸化 Kharasch-Sosnovsky Oxidation
  7. 2010年日本化学会各賞発表-学会賞-
  8. 第8回平田メモリアルレクチャー
  9. グラクソ、糖尿病治療薬「ロシグリタゾン」が単独療法無効のリスクを軽減と発表
  10. 高専の化学科ってどんなところ? -その 1-

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年10月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

有機合成化学協会誌2024年12月号:パラジウム-ヒドロキシ基含有ホスフィン触媒・元素多様化・縮環型天然物・求電子的シアノ化・オリゴペプチド合成

有機合成化学協会が発行する有機合成化学協会誌、2024年12月号がオンライン公開されています。…

「MI×データ科学」コース ~データ科学・AI・量子技術を利用した材料研究の新潮流~

 開講期間 2025年1月8日(水)、9日(木)、15日(水)、16日(木) 計4日間申込みはこ…

余裕でドラフトに収まるビュッヒ史上最小 ロータリーエバポレーターR-80シリーズ

高性能のロータリーエバポレーターで、効率良く研究を進めたい。けれど設置スペースに限りがあり購入を諦め…

有機ホウ素化合物の「安定性」と「反応性」を両立した新しい鈴木–宮浦クロスカップリング反応の開発

第 635 回のスポットライトリサーチは、広島大学大学院・先進理工系科学研究科 博士…

植物繊維を叩いてアンモニアをつくろう ~メカノケミカル窒素固定新合成法~

Tshozoです。今回また興味深い、農業や資源問題の解決の突破口になり得る窒素固定方法がNatu…

自己実現を模索した50代のキャリア選択。「やりたいこと」が年収を上回った瞬間

50歳前後は、会社員にとってキャリアの大きな節目となります。定年までの道筋を見据えて、現職に留まるべ…

イグノーベル賞2024振り返り

ノーベル賞も発表されており、イグノーベル賞の紹介は今更かもしれませんが紹介記事を作成しました。 …

亜鉛–ヒドリド種を持つ金属–有機構造体による高温での二酸化炭素回収

亜鉛–ヒドリド部位を持つ金属–有機構造体 (metal–organic frameworks; MO…

求人は増えているのになぜ?「転職先が決まらない人」に共通する行動パターンとは?

転職市場が活発に動いている中でも、なかなか転職先が決まらない人がいるのはなぜでしょう…

三脚型トリプチセン超分子足場を用いて一重項分裂を促進する配置へとペンタセンクロモフォアを集合化させることに成功

第634回のスポットライトリサーチは、 東京科学大学 物質理工学院(福島研究室)博士課程後期3年の福…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP