[スポンサーリンク]

スポットライトリサーチ

正立方体から六面体かご型に分子骨格を変える

[スポンサーリンク]

第430回のスポットライトリサーチは、京都大学大学院工学研究科(松原研究室)修士2年 竹邊 日和 さんにお願いしました。

キュバンといえば、きれいな正立方体構造を思い浮かべるかと思います。しかし、その高い対称性のために置換基導入して非対称化してキラリティを付与することが難しいとされています。今回ご紹介するのは、立方体骨格そのものを変形させる際に左右のひねりを制御する不斉合成の新たな手法の開発と、そして得られた六面体かご型分子クネアンの光学活性分子としての可能性を見出したという成果です。本成果は、European Journal of Organic Chemistry 誌 原著論文とプレスリリースに公開されており、Front Coverにも採用されています。Front Coverは竹邊さんが手書きされたとのことです!

Catalytic Asymmetric Synthesis of 2,6‐Disubstituted Cuneanes through Enantioselective Constitutional Isomerization of 1,4‐Disubstituted Cubanes
Takebe, H.; Matsubara, S. European Journal of Organic Chemistry, 2022.  DOI:10.1002/ejoc.202200567

研究室を主宰されている松原 誠二郎 教授から、竹邊さんについて以下のコメントを頂いていますそれでは今回もインタビューをお楽しみください!

竹邊さんの学年は,4年生の卒業研究開始時にCOVID19でいきなり登校が制限された苦難の学年です。当初大学の指示に従いリモートでしか会うことはなかったのですが,難しいスペクトルの問題をだしてもいち早く正解を送り返してくるような方で,「分子の形」に関わる研究が好きだろうな,と思っていました。登校は夏になりましたが,お会いした瞬間に,3回生の授業で,いつも右の前列に座り,授業が終わると,素早くさっと退出していた学生さんであることに気づきました。今回の業績は,複雑な分子対称性の最も面白い例の一つで,本人と立体化学を議論してもすぐに理解されるので,こういう特殊感覚を最初から持っているのだろうな,と思っていました。版権の関係で,このサイトではお見せできませんが,上記の仕事は,EJOCのFront Cover (https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/ejoc.202201014)に採用されています。とてもセンスのいい絵です。もちろん,その絵を手書きで描いたのは,本人です。見ていただくと,この方の特殊な能力がわかります。また,竹邊さんは,私共の展開するデジタル有機合成研究の主要研究者であることも申し添えます。

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

高対称正立方体分子(キュバン)から、非対称六面体かご型分子(クネアン)への「変形」を行う骨格異性化反応で、不斉誘導が起こることを世界で初めて示しました。正立方体分子(サイコロ型)であるキュバンは、種々の医薬分子におけるベンゼン骨格の代わりに導入され、薬理効果を向上させることで注目されています。対頂線上に二つ置換基があるキュバンは、高い対称性を有しており、この骨格に不斉環境を構築するにはさらに二つ以上の置換基を制御しながら導入する必要があります。しかし、今回特殊なパラジウム錯体を用いることで、キュバン骨格中の二本のC–C結合を選択的に組み変え、非対称化した六面体かご型分子クネアンを鏡像異性体比最大89/11で一方の鏡像体にすることに成功しました。本研究は、不斉合成の新しい手法を示すだけでなく、キュバン導入により活性が改善される薬物分子に、さらに不斉環境を容易に設定することを可能にします。このようにして得られる六面体かご型分子クネアンは、光学活性分子としての可能性を新たに示すことになります。

出発物の1,4-二置換キュバンは非常に対称性が高く、立方体を形成する8本のC–C結合のうち、2本が切断・再結合することで、2,6-二置換クネアンになります。生成物のクネアンの鏡像異性体のうち、一方のみを選択的に合成するためには、適切な2本の組み合わせを選択するという非常に難しい反応過程があります。一般の不斉合成では、鏡像体それぞれに到達する二つのルートの選択を行いますが、今回は6つの可能なルートのうちの3つについてどれかを選ぶという特殊な不斉合成です。

そしてこの反応を可能にしたのが、パラジウムの周りに配位子を強固に固定したピンサー型錯体です。

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

正直、不斉合成の可能性を疑ったこともありましたが、ネガティブにならず可能性を信じて、手に入る触媒はどんどん試していきました。ピンサー型錯体にたどりついたのは、今から思えば偶然ではなく、キュバンの形にフィットするような感覚を大事にしたからではないかと思います。

また、この成果にキュバン合成の開発者であるEaton先生から祝意をいただけたこと、論文誌の表紙を自分で描かせていただけたのも、貴重な経験となりました。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

反応機構についての考察が難しかったです。1971年にEaton先生らによって報告された機構では銀もパラジウムも金属挿入、カチオン性中間体を経由するとされており、これを踏まえて当初は銀カチオンの対アニオンにBINOLやBINAPHOSなどのキラルアニオンを用いることでの不斉誘導を期待しました。しかしながら、わずかな不斉誘起しか観測されませんでした。銀は金属挿入を経ずにカチオン種が生じるため不可逆となり、不斉誘導が困難だったのではないか、と考えました。

ここで、パラジウムに注目しました。パラジウムは、可逆的な酸加的挿入によりキュバンが非対称化しキラリティーが導入される、パラダサイクルを形成する機構を考えることができます。キラルリガンドを用いない場合は、生じうる二種類のパラダサイクル中間体は等量のエナンチオマー混合物であるラセミ体となるため不斉誘導は起こりません。キラルリガンドを用いれば、パラダサイクル中間体はジアステレオマーとなり、もし一方の中間体が他方の転位よりも早く起こるのであれば、不斉誘導が可能であると考えられます。狙い通り、パラジウムピンサー型錯体の利用により、不斉誘導が達成できました。

Q4. 将来は化学とどう関わっていきたいですか?

化学とどう関わっていくかについて目下思案中ですが、有機化学で培った力を生かして、異分野の人と共同し新たな価値を生み出したいと考えています。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

ここまでお読みいただきありがとうございました。「キュバン」と「クネアン」というちょっと変わった分子について、少しでも興味を持っていただけたら幸いです。

最後になりましたが、本研究を行うにあたり手厚いご指導・ご助言をいただきました松原誠二郎教授をはじめ、研究をサポートしていただきました松原研究室の皆様に感謝申し上げます。そして, 自分の研究を紹介できるという貴重な機会を頂いた Chem-Station のスタッフの皆様に深く感謝申し上げます。

研究者の略歴

名前:竹邊 日和 (たけべ ひより)
所属:京都大学工学研究科材料化学専攻有機反応化学分野 松原誠二郎研究室 修士課程2年
研究テーマ:光学活性かご型多面体分子群合成に関する研究
略歴:2021年3月 京都大学工学部工業化学科 卒業

hoda

投稿者の記事一覧

大学院生です。ケモインフォマティクス→触媒

関連記事

  1. 採用面接で 「今年の日本化学会では発表をしますか?」と聞けば
  2. NMRデータ処理にもサブスクの波? 新たなNMRデータ処理ソフト…
  3. 放線菌が生産するアベナルミ酸生合成において、ジアゾ化とヒドリド転…
  4. 流れる電子ッ!壊れるピリジンッ!含窒素多環式骨格構築!
  5. フラッシュ精製装置「バイオタージSelect」を試してみた
  6. 実験の再現性でお困りではありませんか?
  7. 高専シンポジウム in KOBE に参加しました –その 2: …
  8. α,β-不飽和イミンのγ-炭素原子の不斉マイケル付加反応

注目情報

ピックアップ記事

  1. ペプチド鎖が精密に編み込まれた球殻状ナノカプセル〜24交点の絡まりトポロジーをもつ[6]カテナン分子の合成〜
  2. カルボニル-エン反応(プリンス反応) Carbonyl-Ene Reaction (Prins Reaction)
  3. 第96回日本化学会付設展示会ケムステキャンペーン!Part II
  4. 天然の保護基!
  5. 結晶スポンジ法から始まったミヤコシンの立体化学問題は意外な結末
  6. 有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~
  7. 第69回―「炭素蒸気に存在する化学種の研究」Harold Kroto教授
  8. マテリアルズ・インフォマティクスの手法:条件最適化に用いられるベイズ最適化の基礎
  9. シャープレス・香月不斉エポキシ化反応 Sharpless-Katsuki Asymmetric Epoxidation (Sharpless AE)
  10. 【酵素模倣】酸素ガスを用いた MOF 内での高スピン鉄(IV)オキソの発生

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年10月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

コバルト触媒による多様な低分子骨格の構築を実現 –医薬品合成などへの応用に期待–

第 642回のスポットライトリサーチは、武蔵野大学薬学部薬化学研究室・講師の 重…

ヘム鉄を配位するシステイン残基を持たないシトクロムP450!?中には21番目のアミノ酸として知られるセレノシステインへと変異されているP450も発見!

こんにちは,熊葛です.今回は,一般的なP450で保存されているヘム鉄を配位するシステイン残基に,異な…

有機化学とタンパク質工学の知恵を駆使して、カリウムイオンが細胞内で赤く煌めくようにする

第 641 回のスポットライトリサーチは、東京大学大学院理学系研究科化学専攻 生…

CO2 の排出はどのように削減できるか?【その1: CO2 の排出源について】

大気中の二酸化炭素を減らす取り組みとして、二酸化炭素回収·貯留 (CCS; Carbon dioxi…

モータータンパク質に匹敵する性能の人工分子モーターをつくる

第640回のスポットライトリサーチは、分子科学研究所・総合研究大学院大学(飯野グループ)原島崇徳さん…

マーフィー試薬 Marfey reagent

概要Marfey試薬(1-フルオロ-2,4-ジニトロフェニル-5-L-アラニンアミド、略称:FD…

UC Berkeley と Baker Hughes が提携して脱炭素材料研究所を設立

ポイント 今回新たに設立される研究所 Baker Hughes Institute for…

メトキシ基で転位をコントロール!Niduterpenoid Bの全合成

ナザロフ環化に続く二度の環拡大というカスケード反応により、多環式複雑天然物niduterpenoid…

金属酸化物ナノ粒子触媒の「水の酸化反応に対する駆動力」の実験的観測

第639回のスポットライトリサーチは、東京科学大学理学院化学系(前田研究室)の岡崎 めぐみ 助教にお…

【無料ウェビナー】粒子分散の最前線~評価法から処理技術まで徹底解説~(三洋貿易株式会社)

1.ウェビナー概要2025年2月26日から28日までの3日間にわたり開催される三…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー