[スポンサーリンク]

スポットライトリサーチ

可視光を吸収する配位子を作って、配位先のパラジウムを活性化する

[スポンサーリンク]

第417回のスポットライトリサーチは、千葉大学大学院医学薬学府(根本研究室)・栗原 崇人 さんにお願いしました。

Pd触媒は、触媒反応の種類も多く、合成において広く用いられる遷移金属触媒と言われています。パラジウム錯体の配位子により、Pd触媒の反応性は変化します。従来のPd触媒は熱エネルギーを用いているものが多いですが、今回ご紹介するのは、可視光のエネルギーを効率的に利用したパラジウム触媒の配位子設計と合成を行ったという成果です。計算と実験の組み合わせにより達成された本成果は、Nature Communications 誌 原著論文およびプレスリリースに公開されています。

A Visible-Light Activated Secondary Phosphine Oxide Ligand Enabling Pd-Catalyzed Radical Cross-Couplings
Kuribara, T.; Nakajima, M.; Nemoto, T. Nature Communications, 2022, 13, 4052. DOI:10.1038/s41467-022-31613-9

研究を指導された根本 哲宏 教授中島 誠也 助教から、栗原さんについて以下のコメントを頂いています。それでは今回もインタビューをお楽しみください!

根本 哲宏 先生

本研究は、栗原君と中島助教の個人技を生かして、2年足らずの間で一気にやり遂げられたものになります。私のコントリビューションは、おそらく2級ホスフィンオキシドの化学に多少なりとも親和性があったことから、本研究の可能性とアイデアの芽を摘むことなく、自由に検討する場を二人に与えたことくらいかと思います。年を重ねるにつれ、教員として、研究者として果たすべき役割も変わってきていると感じますが、栗原君、中島助教のような才能の有る若手人材がフルスイングで戦えるように、今後もサポートしていけたらと思います。

中島 誠也 先生

栗原崇人くんとは、2017年4月から千葉大学薬学部根本研究室の私のグループで今日まで一緒に研究を行ってきました。当時から彼の課題解決能力には目を見張るものがあり、繊密な文献調査、緻密な量子計算、そして膨大な実験を行うことで研究を遂行してきました。薬学部6年制ということもあり薬局実習等に時間を割かれる中でも、彼は早朝ラボに来て反応をかけ、日中実習に行き、夕方にはラボに再び来て実験の続きを行い、深夜に帰宅するという生活を続けていました。驚くべきことに、それを1日も欠かすことなく毎日やりとげるという超人的な大学生でした。今回の研究は、彼が博士課程進学後、2020年4月にスタートした研究です。コロナによる多大な行動制限の中、わずか2年で本研究を完遂できたのは偏に彼の努力の賜物です。博士の学位取得後はアカデミアでの研究を希望しているため、今後彼がどのように羽ばたいていくのか、目が離せません。

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

青色光のエネルギーを吸収し、パラジウムを活性化する配位子の開発に成功しました。

パラジウム(Pd)触媒を用いたクロスカップリング反応(異なる分子同士を結合する反応)は、2010年にノーベル化学賞を受賞した重要技術です。使用する配位子によってPdの反応性の制御が可能となるため、これまで様々な配位子が開発されてきました。またLEDや光触媒の発展に伴い、可視光エネルギーを利用した研究が注目を集めており、近年Pd触媒を用いた可視光反応も報告されています。しかし、フォトレドックス触媒として利用されるRu錯体やIr錯体と比較してPd錯体は可視光を吸収しにくい一方で、可視光エネルギーの利用のためにデザインされた配位子の報告例はありませんでした。

そこで我々は、可視光を吸収する配位子を開発すれば、吸収した光エネルギーによって配位先のPdを効率的に活性化できるのではないか?と考えました。今回の研究では、理論計算により可視光を吸収する配位子とPd錯体をデザインしました。その結果、2価Pd錯体と0価Pd錯体のどちらの錯体からも、ラジカル反応に活性な1価Pd錯体が発生すると予測されました。そこで実際に合成した配位子をPd触媒光反応に応用することで、様々なラジカルクロスカップリング反応を開発することに成功しました。

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

配位子の構造を二級ホスフィンオキシドにしたところです。

一般に広く用いられる配位子はトリフェニルホスフィン(PPh3)に代表される三級ホスフィンであり、二級ホスフィンオキシドを配位子に使う例はあまり多くありません。実際私も、初めは三級ホスフィン型の配位子を作ろうと考えていました。しかし可視光吸収ユニットを有するためか、合成反応中および精製中に三級ホスフィンオキシドに容易に酸化されてしまいました。そこで私は、始めから酸化されている二級ホスフィンオキシドであれば今回のケースにおいても、空気雰囲気下で取り扱い容易な配位子として利用できるのではないか?と考えました。結果これが上手くはまり、合成・精製ともに実験台で簡便に行うことが可能となりました。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

配位子が可視光を吸収した後のメカニズム解析が難しかったところです。

本研究テーマでは、「配位子に可視光を吸収させる意義がどこにあるのか?」という点を明らかにする必要がありました。遷移金属触媒を用いた光反応に取り組んだのは研究室で初めてだったため、理論はもちろんのこと、解析方法についても一から学び直し、新しい解析をトライしていきました。最終的に、量子化学計算・実験化学・分光学の3つの側面からアプローチすることで、最もらしいメカニズムを提示できたと考えています。特にパラジウムが近傍にあるとき、配位子の明らかな消光(蛍光の強度が小さくなること)を観測することができました。これが光を吸収する配位子ならではの現象で、メカニズム解析の大きな一歩を踏み出すことができました。

Q4. 将来は化学とどう関わっていきたいですか?

博士課程修了後、アカデミアで研究を続けたいと考えています。今回のようにメカニズムをベースとした新手法の開発や環境・エネルギー問題に貢献するような研究にも興味がありますし、薬剤師免許を持つ化学者として創薬に結びつく研究にも興味があります。研究室に配属されてからというもの、有機化学を基盤に多岐にわたる研究テーマ(遷移金属触媒反応、光反応、量子化学計算による反応機構解析、新規蛍光プローブの開発など)に取り組んできました。今後も根っこの部分は変わらずに、されど新しい技術を取り入れて化学の発展に挑戦していきたいと思います。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

お読みいただきありがとうございました。本研究を始めてからというもの、壁にぶつかり、迂回し、寄り道し、時には迷子になりましたが、何とか新しい道を見つけ、論文としてまとめることができました。一つの研究にとことん向き合えるのは大学生、大学院生の特権だと思いますので、そうした過程も楽しめると良いなと考えています。

最後になりますが、本研究の遂行にあたり多くのご助言・ご助力をいただいた根本哲宏先生、中島誠也先生にこの場を借りて厚く御礼申し上げます。また本研究を取り上げてくださったChem-Stationのスタッフの皆様に深く感謝申し上げます。

研究者の略歴

名前:栗原 崇人くりばら たかひと
所属:千葉大学大学院医学薬学府先端医学薬学専攻 薬化学研究室(根本研究室) 4年博士課程3年
研究テーマ:可視光活性型リガンドの開発とPd触媒光反応への応用
略歴:
2020年3月 千葉大学薬学部薬学科 卒業(根本哲宏 教授)
2020年4月– 千葉大学大学院医学薬学府先端医学薬学専攻 4年博士課程(根本哲宏 教授)
2021年4月– 日本学術振興会 特別研究員 (DC1)
2022年   第71回リンダウ・ノーベル賞受賞者会議

hoda

投稿者の記事一覧

大学院生です。ケモインフォマティクス→触媒

関連記事

  1. サーモサイエンティフィック「Exactive Plus」: 誰で…
  2. 日化年会に参加しました:たまたま聞いたA講演より
  3. ナノチューブを簡単にそろえるの巻
  4. 糖鎖クラスター修飾で分子の生体内挙動を制御する
  5. 今度こそ目指せ!フェロモンでリア充生活
  6. 有機分子・バイオエレクトロニクス分科会(M&BE) 新…
  7. Reaction Plus:生成物と反応物から反応経路がわかる
  8. 含ケイ素四員環 -その1-

注目情報

ピックアップ記事

  1. ミドリムシが燃料を作る!? 石油由来の軽油を100%代替可能な次世代バイオディーゼル燃料が完成
  2. 高専の化学科ってどんなところ? -その 2-
  3. 高純度化学研究所が実物周期標本を発売開始
  4. 多価不飽和脂肪酸による光合成の不活性化メカニズムの解明:脂肪酸を活用した光合成活性の制御技術開発の可能性
  5. 核のごみを貴金属に 現代の錬金術、実験へ
  6. 2009アジアサイエンスキャンプ・参加者募集中!
  7. 北九州における化学企業の盛んな生産活動
  8. 2013年ノーベル化学賞は誰の手に?トムソンロイター版
  9. GCにおける水素のキャリアガスとしての利用について
  10. π電子系イオンペアの精密合成と集合体の機能開拓

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年9月
 1234
567891011
12131415161718
19202122232425
2627282930  

注目情報

最新記事

植物由来アルカロイドライブラリーから新たな不斉有機触媒の発見

第632回のスポットライトリサーチは、千葉大学大学院医学薬学府(中分子化学研究室)博士課程後期3年の…

MEDCHEM NEWS 33-4 号「創薬人育成事業の活動報告」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

第49回ケムステVシンポ「触媒との掛け算で拡張・多様化する化学」を開催します!

第49回ケムステVシンポの会告を致します。2年前(32回)・昨年(41回)に引き続き、今年も…

【日産化学】新卒採用情報(2026卒)

―研究で未来を創る。こんな世界にしたいと理想の姿を描き、実現のために必要なものをうみだす。…

硫黄と別れてもリンカーが束縛する!曲がったπ共役分子の構築

紫外光による脱硫反応を利用することで、本来は平面であるはずのペリレンビスイミド骨格を歪ませることに成…

有機合成化学協会誌2024年11月号:英文特集号

有機合成化学協会が発行する有機合成化学協会誌、2024年11月号がオンライン公開されています。…

小型でも妥協なし!幅広い化合物をサチレーションフリーのELSDで検出

UV吸収のない化合物を精製する際、一定量でフラクションをすべて収集し、TLCで呈色試…

第48回ケムステVシンポ「ペプチド創薬のフロントランナーズ」を開催します!

いよいよ本年もあと僅かとなって参りましたが、皆様いかがお過ごしでしょうか。冬…

3つのラジカルを自由自在!アルケンのアリール–アルキル化反応

アルケンの位置選択的なアリール–アルキル化反応が報告された。ラジカルソーティングを用いた三種類のラジ…

【日産化学 26卒/Zoomウェビナー配信!】START your ChemiSTORY あなたの化学をさがす 研究職限定 キャリアマッチングLIVE

3日間で10領域の研究職社員がプレゼンテーション!日産化学の全研究領域を公開する、研…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP