[スポンサーリンク]

化学者のつぶやき

トリテルペノイドの「トリ」!?octanorcucurbitacin Bの全合成

[スポンサーリンク]

ククルビタン型トリテルペンoctanorcucurbitacin Bの全合成が初めて達成された。常法である半合成法から脱却した四環性テルペノイドの効率的な構築が本合成の特徴である。

ククルビタン型トリテルペン類の合成研究

ククルビタン類はトリテルペノイドの一種であり、抗腫瘍活性や抗炎症活性、抗HIV活性を示すことが知られる[1]。その構造は複雑であり、四環式骨格の縮環部(C9, C13, C14位)に3つの不斉四級炭素をもつ(図1A)。そのために不斉四級炭素を1つまたは2つ有するステロイドよりも合成難度が高い。また、同様の構造を有するラノスタン類は比較的平坦な多環構造を形成するのに対して、ククルビタン類はB環とC環がcis縮環しているためにその骨格はより立体的となる。
ククルビタン類の全合成はこれまで報告がなく、すべて半合成である。その手法として、天然物のククルビタン類の誘導体化の他、ラノスタン類からの生体模倣カチオン転位によるククルビタン類への変換法がある(図1B)[2]。その機構はラノスタン骨格を有する化合物のC9位にカルボカチオンを生成、C10位のC9位へのメチル基転位からはじまる、C5位からC10位へのヒドリド転位、C6位の脱プロトン化が提唱されている。しかし、この変換法は、原料となるラノスタン骨格をもつ天然物が入手困難であることが大きな課題であった[3]
今回、ダートマス大学のMicalizioらは、ラノスタン骨格を経由しない手法で、ククルビタン類であるoctanorcucurbitacin B(1)の不斉全合成に挑戦した。著者らによる1の逆合成解析を示す(図1C)。まず、2のA環とB環の修飾によって1が得られる。2は、4の酸化およびオレフィンを異性化した3に対する立体選択的なメチル基導入によって合成できると考えた。45の分子内溝呂木–ヘック反応、5は自身で開発したキラルエンイン6とTMSプロピンとの環化付加反応[4]による合成を計画した。つまり、短工程でククルビタン骨格の合成計画を立て、半合成からの脱却を図った。

図1. (A) ククルビタン類の構造、(B) ククルビタン類の半合成法、(C) octanorcucurbitacin B (1)の逆合成解析

 

“Asymmetric De Novo Synthesis of a Cucurbitane Triterpenoid: Total Synthesis of Octanorcucurbitacin B”
Bucknam, A. R.; Micalizio, G. C. J. Am. Chem. Soc. 2022, 144, 8493–8497.  DOI: 10.1021/jacs.2c03109

論文著者の紹介

研究者:Glenn C. Micalizio

研究者の経歴:

1992–1996 B.Sc. in Chemistry, Ramapo College of New Jersey, USA
1996–2001 Ph.D. in Chemistry, University of Michigan, USA (Prof. William R. Roush)
2001–2003 Postdoc, Harvard University, USA (Prof. Stuart L. Schreiber)
2003–2008 Assistant Professor, Yale University, USA
2008–2013 Associate Professor, The Scripps Research Institute, USA
2013–                            Professor, Dartmouth College, USA

研究内容:天然物合成、合成方法論の開発

論文の概要

主骨格構築法であるキラルエンイン6から5の機構を含む1の合成を図2に示す。まずTMSプロピンとTi(OiPr)4からチタンーアルキン錯体、6nBuLiからリチウムアルコキシドが生じる。次に、これらの環化付加反応によってチタノシクロペンタジエン10が位置選択的に生成する。続く分子内[4+2]環化反応、キレトロピー反応、TMS基の除去により、C13位の不斉四級炭素およびC環とD環が形成された5を与えた(2工程)。次に5の分子内溝呂木–ヘック反応によって4を合成した。立体選択的なB環とC環の縮環によってC9位の不斉四級炭素の構築が達成されており、6からわずか3工程でククルビタン類の基礎骨格を形成することに成功した。残る課題はC14位の不斉四級炭素の構築である。4のアルコールを酸化した後、オレフィンを異性化しB環とC環がcis縮環した3とした。3のケトンを立体選択的に還元し、続くシクロプロパン化により11を得た。さらに、11の酸化およびバーチ還元によってシクロプロパン環の位置選択的開裂が進行し、C14位の不斉四級炭素をもつ12へと導いた。最後に、12のA環とB環を6工程で修飾することで1を合成した。

図2. Octanorcucurbitacin B (1)の合成経路

参考文献

  1. (a) Chen, J. C.; Chiu, M. H.; Nie, R. L.; Cordell, G. A.; Qiu, S. X. Cucurbitacins and Cucurbitane Glycosides: Structures and Biological Activities. Nat. Prod. Rep. 2005, 22, 386. DOI: 10.1039/B418841C (b) Chen, J.-C.; Zhang, G.-H.; Zhang, Z.-Q.; Qiu, M.-H.; Zheng, Y.-T.; Yang, L.-M.; Yu, K.-B. Octanorcucurbitane and Cucurbitane Triterpenoids from the Tubers of Hemsleya Endecaphylla with HIV-1 Inhibitory Activity. J. Nat. Prod. 2008, 71, 153–155. DOI: 10.1021/np0704396 (c) Alsayari, A.; Halaweish, F.; Gurusamy, N. The Role of Cucurbitacins in Combating Cancers: A Mechanistic Review. Phcog. Rev. 2018, 12, 157. DOI: 10.4103/phrev.phrev_17_18
  2. (a) Ramalhete, C.; Lopes, D.; Molnár, J.; Mulhovo, S.; Rosário, V. E.; Ferreira, M.-J. U. Karavilagenin C Derivatives as Antimalarials. Bioorganic & Medicinal Chemistry 2011, 19, 330–338. DOI: 1016/j.bmc.2010.11.015 (b) Shibuya, M.; Adachi, S.; Ebizuka, Y. Cucurbitadienol Synthase, the First Committed Enzyme for Cucurbitacin Biosynthesis, Is a Distinct Enzyme from Cycloartenol Synthase for Phytosterol Biosynthesis. Tetrahedron 2004, 60, 6995–7003. DOI: 10.1016/j.tet.2004.04.088
  3. (a) Edwards, O. E.; Paryzek, Z. Lanostane-to-Cucurbitane Transformation. Can. J. Chem. 1983, 61, 1973–1980. DOI: 10.1139/v83-341 (b) Edwards, O. E.; Kolt, R. J. Lanostane to Cucurbitane Transformations. Can. J. Chem. 1987, 65, 595–612. DOI: 10.1139/v87-104
  4. (a) Micalizio, G. C.; Mizoguchi, H. The Development of Alkoxide-Directed Metallacycle-Mediated Annulative Cross-Coupling Chemistry. Isr. J. Chem.2017, 57, 228−238. DOI: 10.1002/ijch.201600098 (b) Nicholson, J. M.; Millham, A. B.; Bucknam, A. R.; Markham, L. E.; Sailors, X. E.; Micalizio, G. C. A General Enantioselective and Stereochemically Divergent Four-Stage Approach to Fused Tetracyclic Terpenoid Systems. J. Org. Chem. 2022, 87, 3352–3362. DOI: 10.1021/acs.joc.1c02979
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 動的共有結合性ラジカルを配位子とした金属錯体の合成
  2. シグマアルドリッチ器具・消耗品大特価キャンペーン【2018年3月…
  3. 熱や力で真っ二つ!キラルセルフソーティングで構築されるクロミック…
  4. 「あの人は仕事ができる」と評判の人がしている3つのこと
  5. 東京化成工業がケムステVシンポに協賛しました
  6. The Journal of Unpublished Chemi…
  7. “マブ” “ナブ”…
  8. 真空ポンプはなぜ壊れる?

注目情報

ピックアップ記事

  1. ラリー・オーヴァーマン Larry E. Overman
  2. 痛風薬「フェブキソスタット」の米国売上高が好発進
  3. グルコース (glucose)
  4. 【8/25 20:00- 開催!】オンラインイベント「研究者と描くAI社会の未来設計」
  5. 東レから発表された電池と抗ウイルスに関する研究成果
  6. 林 雄二郎 Yujiro Hayashi
  7. なんと!アルカリ金属触媒で進む直接シリル化反応
  8. 製薬各社 2010年度 第1四半期決算を発表
  9. 薬価4月引き下げ 製薬各社は「アジア」「非医薬」に活路
  10. 防カビ効果、長持ちします 住友化学が新プラスチック

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年8月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

植物由来アルカロイドライブラリーから新たな不斉有機触媒の発見

第632回のスポットライトリサーチは、千葉大学大学院医学薬学府(中分子化学研究室)博士課程後期3年の…

MEDCHEM NEWS 33-4 号「創薬人育成事業の活動報告」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

第49回ケムステVシンポ「触媒との掛け算で拡張・多様化する化学」を開催します!

第49回ケムステVシンポの会告を致します。2年前(32回)・昨年(41回)に引き続き、今年も…

【日産化学】新卒採用情報(2026卒)

―研究で未来を創る。こんな世界にしたいと理想の姿を描き、実現のために必要なものをうみだす。…

硫黄と別れてもリンカーが束縛する!曲がったπ共役分子の構築

紫外光による脱硫反応を利用することで、本来は平面であるはずのペリレンビスイミド骨格を歪ませることに成…

有機合成化学協会誌2024年11月号:英文特集号

有機合成化学協会が発行する有機合成化学協会誌、2024年11月号がオンライン公開されています。…

小型でも妥協なし!幅広い化合物をサチレーションフリーのELSDで検出

UV吸収のない化合物を精製する際、一定量でフラクションをすべて収集し、TLCで呈色試…

第48回ケムステVシンポ「ペプチド創薬のフロントランナーズ」を開催します!

いよいよ本年もあと僅かとなって参りましたが、皆様いかがお過ごしでしょうか。冬…

3つのラジカルを自由自在!アルケンのアリール–アルキル化反応

アルケンの位置選択的なアリール–アルキル化反応が報告された。ラジカルソーティングを用いた三種類のラジ…

【日産化学 26卒/Zoomウェビナー配信!】START your ChemiSTORY あなたの化学をさがす 研究職限定 キャリアマッチングLIVE

3日間で10領域の研究職社員がプレゼンテーション!日産化学の全研究領域を公開する、研…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP