[スポンサーリンク]

化学者のつぶやき

スチレンにCoのHATをかぶせれば、インドールを不斉アルキル化

[スポンサーリンク]

コバルト触媒とスチレンを用いたインドールの不斉アルキル化が開発された。系中で生じるCo(III)–H種とアルケンの水素移動(HAT)反応と続く一電子酸化によりキラルなアルキルコバルト(IV)の形成が本反応の鍵である。

スチレンを用いたインドールの不斉アルキル化

アルキルインドールは天然物、医農薬分子などに多く存在する重要な骨格であり、その不斉合成法の開発が多く研究されている[1]。不飽和カルボニルなどの電子求引基をもつアルケンを用いるインドールの不斉アルキル化の例は多い。これら以外のアルケンに対する手法としては、キラルな酸触媒や遷移金属触媒を用いる分子内不斉アルキル化が近年多く知られる(図1A)[2]。それに対し、アルケンとインドールの分子間不斉アルキル化はアルケンまたはインドール上に配向基(DG)をもたせる必要がある(図1B)[3]。配向基をもたないアルケンやインドールを用いる分子間不斉アルキル化反応はほとんど例がないのが現状である[4]

一方、遷移金属ヒドリド触媒を用いたアルケンのヒドロ官能基化反応が最近数多く報告された[5]。本手法を用いるアルキルインドールの合成が一例知られる。BuchwaldらはCu–H触媒系により、スチレンを用いてN-ベンゾイルオキシルインドールの不斉アルキル化を報告した(図1C)[6]。銅ヒドリド種とスチレンから生じるアルキル銅種が、求電子的なN-ベンゾイルオキシルインドールと反応してアルキルインドールが得られる 。

今回、Zhang教授らはキラルなコバルトヒドリド(Co–H)触媒とスチレン類を用いて、インドールの分子間不斉アルキル化を開発した(図1D)。Co(III)–HとスチレンとのHAT反応で生成したアルキルコバルト(III)を一電子酸化し、アルキルコバルト(IV)種を発生させることで、インドールとの芳香族求電子置換反応が可能となったことが鍵である。

図1. [A] フリーデル・クラフツ型アルキル化 [B] 配向基を利用したC–Hアルキル化 [C] MH触媒によるヒドロ炭素官能基化 [D] 本研究

“Cobalt-Catalyzed Asymmetric Alkylation of (Hetero)Arenes with Styrenes”

Qin, T.; Lv, G.; Miao, H.; Guan, M.; Xu, C.; Zhang, G.; Xiong, T.; Zhang, Q.

Angew. Chem., Int. Ed. 2022,  61, e202201967. DOI: 10.1002/anie.202201967

論文著者の紹介

研究者:Qian Zhang (张 前)(研究室HP)

研究者の経歴:

1993 BSc., Northeast Normal University, China
1996 M.S., Northeast Normal University, China (Prof. Q. Liu)
1996–1999 Assistant Professor, Organic Chemistry Committee of Jilin Province Chemical Society, China
2003 Ph.D., Changchun Institute of Applied Chemistry, China (Prof. L.-X. Wang)
2004.2–2004.7 Visiting Scholar, Sydney University, Australia
2004 Associate Professor, Northeast Normal University, China
2008 Professor, Northeast Normal University, China

研究内容:新規C–N結合形成反応の開発、安価な遷移金属触媒によるクロスカップリング反応の開発

研究者:Ge Zhang (张 鸽)(研究室HP)

研究者の経歴:

2008–2012 BSc., Yanbian University, China
2017 Ph.D., Northeast Normal University, China (Prof. Q. Zhang)
2017–2020 Postdoc, Northeast Normal University, China (Prof. Q. Zhang)
2020 Assistant Professor, Northeast Normal University, China
2022 Associate Professor, Northeast Normal University, China

研究内容:遷移金属触媒を用いたアルケンの不斉ヒドロ官能基化反応の開発

論文の概要

著者らはキラルなコバルト触媒存在下、ペルオキシ安息香酸tert-ブチル(TBPB)とジメチルフェニルシランを用いて、スチレン1と1-メチルインドール(2a)を–20 °Cで反応させることで、アルキルインドール3が高エナンチオ選択的に得られることを見いだした(図2A)。メチル基、フェニル基、フルオロ基などをもつスチレンを用いても、良い収率かつエナンチオ選択性で対応するアルキルインドールを与えた(3a3c)。アルケン上にアルキル置換基をもつスチレンを用いても反応が進行し、3d3eが得られた。ブロモ、アルデヒド、ボロン酸エステルなどの高反応性官能基をもつインドール類も反応に適用できた(図2B, 3f3h)。なお、インドールの代わりに電子豊富なフェノール類を用いても反応が進行した(3i)。

反応機構に関する知見を得るべく著者らは、本反応条件にラジカル捕捉剤(TEMPO)を添加し、4-メチルスチレン(1a)と2aを反応させた。その結果、アルキルインドール3aは痕跡量しか生成せず、TEMPO付加体4が収率16%で得られた(図2C)。本結果から反応中間体にアルキルラジカルが生じることが示唆される。本結果とその他の機構解明研究の結果(本文とSI参照)に基づき、著者らは次のような反応機構を提唱した(図2D)。まず、コバルト(II)触媒がTBPBで酸化され、コバルト(III)種ABが生成する。錯体Aがシランと反応してコバルトヒドリド種Co(III)–Hを生じ、これが1とのHAT反応を介してアルキルラジカルCとなる。アルキルラジカルがコバルト(II)錯体と再結合してキラルなアルキルコバルト(III)Dを生成する。Dが錯体Bによって一電子酸化され、カチオン性アルキルコバルト(IV)Eとなる。このEが求電子的アルキル化剤として機能し、インドール2が芳香族求電子置換反応することで生成物3を与えるとともにコバルト触媒(II)が再生する。

図2. (A) スチレンの適用範囲 (B) インドール誘導体とその他のアレーンの適用範囲 (C) ラジカル捕捉実験 (D) 推定反応機構

 

以上、コバルトヒドリド触媒を用いてスチレンにHATをかぶせることでインドール類のエナンチオ選択的アルキル化が開発された。本反応は、Co–H触媒と炭素求核剤を用いるスチレンの不斉ヒドロ炭素官能基化の初めての例である。今後、他の求核剤を用いる類似反応への展開が期待できる。

参考文献

  1. Somei, M.; Yamada, F. Simple Indole Alkaloids and Those with a Non-Rearranged Monoterpenoid Unit. Nat. Prod. Rep. 2005, 22, 73–103. DOI: 10.1039/B316241A
  2. (a) Zhang, P.; Tsuji, N.; Ouyang, J.; List, B. Strong and Confined Acids Catalyze Asymmetric Intramolecular Hydroarylations of Unactivated Olefins with Indoles. J. Am. Chem. Soc. 2021, 143, 675–680. DOI: 10.1021/jacs.0c12042 (b) Chianese, A. R.; Lee, S. J.; Gagné, M. R. Electrophilic Activation of Alkenes by Platinum(II): So Much More Than a Slow Version of Palladium(II). Angew. Chem., Int. Ed. 2007, 46, 4042–4059. DOI: 10.1002/anie.200603954 (c) Liu, C.; Widenhoefer, R. A. Gold(I)-Catalyzed Intramolecular Enantioselective Hydroarylation of Allenes with Indoles. Org. Lett. 2007, 9, 1935–1938. DOI: 10.1021/ol070483c (d) Bandini, M.; Eichholzer, A. Enantioselective Gold-Catalyzed Allylic Alkylation of Indoles with Alcohols: An Efficient Route to Functionalized Tetrahydrocarbazoles. Angew. Chem., Int. Ed. 2009, 48, 9533–9537. DOI: 10.1002/anie.200904388 (e) Huang, H.; Peters, R. A. A Highly Strained Planar-Chiral Platinacycle for Catalytic Activation of Internal Olefins in the Friedel–Crafts Alkylation of Indoles. Angew. Chem., Int. Ed. 2009, 48, 604–606. DOI: 10.1002/anie.200804944.
  3. (a) Wang, H.; Bai, Z.; Jiao, T.; Deng, Z.; Tong, H.; He, G.; Peng, Q.; Chen, G. Palladium-Catalyzed Amide-Directed Enantioselective Hydrocarbofunctionalization of Unactivated Alkenes Using a Chiral Monodentate Oxazoline Ligand. J. Am. Chem. Soc. 2018, 140, 3542–3546. DOI: 10.1021/jacs.8b00641 (b) Zhang, C.; Santiago, C. B.; Crawford, J. M.; Sigman, M. S. Enantioselective Dehydrogenative Heck Arylations of Trisubstituted Alkenes with Indoles to Construct Quaternary Stereocenters. J. Am. Chem. Soc. 2015, 137, 15668–15671. DOI: 10.1021/jacs.5b11335 (c) Liu, Y.-H.; Xie, P.-P.; Liu, L.; Fan, J.; Zhang, Z.-Z.; Hong, X.; Shi, B.-F. Cp*Co(III)-Catalyzed Enantioselective Hydroarylation of Unactivated Terminal Alkenes via C–H Activation. J. Am. Chem. Soc. 2021, 143, 19112–19120. DOI: 10.1021/jacs.1c08562 (d) Loup, J.; Zell, D.; Oliveira, J. C. A.; Keil, H.; Stalke, D.; Ackermann, L. Asymmetric Iron-Catalyzed C−H Alkylation Enabled by Remote Ligand Meta-Substitution. Angew. Chem., Int. Ed. 2017, 56, 14197–14201. DOI: 10.1002/anie.201709075 (e) Loup, J.; Mller, V.; Ghorai, D.; Ackermann, L. Enantioselective Aluminum-Free Alkene Hydroarylations through C−H Activation by a Chiral Nickel/JoSPOphos Manifold. Angew. Chem., Int. Ed. 2019, 58, 1749–1753. DOI: 10.1002/anie.201813191
  4. Sevov, C. S.; Hartwig, J. F. Iridium-Catalyzed Intermolecular Asymmetric Hydroheteroarylation of Bicycloalkenes. J. Am. Chem. Soc. 2013, 135, 2116–2119. DOI: 10.1021/ja312360c
  5. (a) Cuesta-Galisteo, S.; Schörgenhumer, J.; Wei, X.; Merino, E.; Nevado, C. Nickel-Catalyzed Asymmetric Synthesis of α-Arylbenzamides. Angew. Chem., Int. Ed. 2021, 60, 1605–1609. DOI: 10.1002/anie.202011342 (b) He, Y.; Song, H.; Chen, J.; Zhu, S. NiH-Catalyzed Asymmetric Hydroarylation of N-Acyl Enamines to Chiral Benzylamines. Nat. Commun. 2012, 12, 638. DOI: 10.1038/s41467-020-20888-5 (c) Green, S. A.; Matos, J. L. M.; Yagi, A.; Shenvi, R. A. Branch-Selective Hydroarylation: Iodoarene–Olefin Cross-Coupling. J. Am. Chem. Soc. 2016, 138, 12779–12782. DOI: 10.1021/jacs.6b08507
  6. Ye, Y.; Kim, S.-T.; Jeong, J.; Baik, M.-H.; Buchwald, S. L. CuH-Catalyzed Enantioselective Alkylation of Indole Derivatives with Ligand-Controlled Regiodivergence. J. Am. Chem. Soc. 2019, 141, 3901–3909. DOI: 10.1021/jacs.8b11838
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. Carl Boschの人生 その3
  2. 第四回Vプレミアレクチャー「金属錯体を利用した光化学アップコンバ…
  3. 再生医療関連技術ーChemical Times特集より
  4. 新型コロナの飲み薬モルヌピラビルの合成・生体触媒を用いた短工程化…
  5. PdとTiがVECsの反応性をひっくり返す?!
  6. 量子化学計算を駆使した不斉ホスフィン配位子設計から導かれる新たな…
  7. 私がなぜケムステスタッフになったのか?
  8. アメリカで Ph.D. を取る -Visiting Weeken…

注目情報

ピックアップ記事

  1. 化学コミュニケーション賞2022が発表
  2. イリヤ・プリゴジン Ilya Prigogine
  3. ボツリヌストキシン (botulinum toxin)
  4. Advanced Real‐Time Process Analytics for Multistep Synthesis in Continuous Flow
  5. 絶対に面白い化学入門 世界史は化学でできている
  6. 乾燥剤の脱水能は?
  7. BASF150年の歩みー特製ヒストリーブックプレゼント!
  8. 摩訶不思議なルイス酸・トリス(ペンタフルオロフェニル)ボラン
  9. Arcutine類の全合成
  10. サブフタロシアニン SubPhthalocyanine

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年7月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

先端の質量分析:GC-MSおよびLC-MSデータ処理における機械学習の応用

キャラクタライゼーションの機械学習応用は、マテリアルズ・インフォマティクス(MI)およびラボオートメ…

原子半径・電気陰性度・中間体の安定性に起因する課題を打破〜担持Niナノ粒子触媒の協奏的触媒作用〜

第648回のスポットライトリサーチは、東京大学大学院工学系研究科(山口研究室)博士課程後期2年の松山…

リビングラジカル重合ガイドブック -材料設計のための反応制御-

概要高機能高分子材料の合成法として必須となったリビングラジカル重合を、ラジカル重合の基礎から、各…

高硬度なのに高速に生分解する超分子バイオプラスチックのはなし

Tshozoです。これまでプラスチックの選別の話やマイクロプラスチックの話、およびナノプラスチッ…

新発想の分子モーター ―分子機械の新たなパラダイム―

第646回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機反応論研究室 助教の …

大人気の超純水製造装置を組み立ててみた

化学・生物系の研究室に欠かせない超純水装置。その中でも最も知名度が高いのは、やはりメルクの Mill…

Carl Boschの人生 その11

Tshozoです。間が空きましたが前回の続きです。時系列が前後しますが窒素固定の開発を始めたころ、B…

PythonとChatGPTを活用するスペクトル解析実践ガイド

概要ケモメトリクスと機械学習によるスペクトル解析を、Pythonの使い方と数学の基礎から実践…

一塩基違いの DNA の迅速な単離: 対照実験がどのように Nature への出版につながったか

第645回のスポットライトリサーチは、東京大学大学院工学系研究科相田研究室の龚浩 (Gong Hao…

アキラル色素分子にキラル光学特性を付与するミセルを開発

第644回のスポットライトリサーチは、東京科学大学 総合研究院 応用化学系 化学生命科学研究所 吉沢…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー