[スポンサーリンク]

化学者のつぶやき

ヒドロキシ基をスパッと(S)、カット(C)、して(S)、アルキル化

[スポンサーリンク]

α-ヒドロキシカルボン酸誘導体のα位アルキル化反応の開発に成功した。α-ヒドロキシカルボン酸誘導体がDMAP-ボリルラジカルで一電子還元される。続く炭素–酸素結合開裂に伴う、スピン中心移動(SCS)により生じたα-カルボニルラジカルがアルケンと反応する。

α-ヒドロキシカルボン酸のヒドロキシ基の変換

α-ヒドロキシカルボン酸は天然物に頻出する構造である。そのヒドロキシ基の変換により、様々なα-官能基化カルボニル化合物を合成できる。極性機構とラジカル機構があるが、ここではラジカル機構について述べる。例えば、炭素–酸素(C–O)結合を均等開裂すれば、α-カルボニルラジカルを生じ、様々な反応剤と反応できる。しかし、そのC–O結合の結合解離エネルギーは大きく、開裂は容易ではない。したがって、ヒドロキシ基を脱離容易な官能基(”活性基”, X)に変換し、炭素–活性基(C–X)結合を均等開裂させ、α-カルボニルラジカルを生成する手法が一般的であり、近年多くの脱酸素的官能基化が報告されている(図1A)[1]
一方で、本著者のWangらは最近、トリフルオロアセトアミドやトリフルオロ酢酸エステルの炭素–フッ素(C–F)結合の連続的なα位アルキル/水素化を開発した(図1B)[2]。強固なC–F結合の切断に成功した鍵に、スピン中心移動(Spin center shift: SCS)機構の利用がある。SCS機構ではまず、カルボニル基の一電子還元によりラジカル種を生成する。そのラジカル中間体から、フッ素アニオンの脱離とヘテロ原子Yからの電子供与により1,2-ラジカル移動(スピン中心移動)することでα-カルボニルラジカルとなる。これとアルケンや水素源を反応させることで、炭素–フッ素結合の官能基化が可能となった。
今回著者らは、この知見をもとに、直接に炭素–活性基(C–X)結合を均等開裂させない手法、つまり、SCS機構でα-ヒドロキシカルボン酸誘導体のC–O結合を切断し、α-カルボニルラジカルの生成を試みた(図1C)。その結果、弱い活性基(Z = Ac)でも、α-カルボニルラジカルの生成に成功し、未踏のα-ヒドロキシカルボン酸誘導体のアルキル化反応を開発した。

図1. (A) 炭素–酸素結合開裂の例 (B) 連続的α-炭素–フッ素結合の官能基化 (C) 本手法

 

“Dehydroxylative Alkylation of α-Hydroxy Carboxylic Acids Derivatives via a Spin-Center Shift”
Peng, T.-Y.; Xu, Z.-Y.; Zhang, F.-L.; Li, B.; Xu, W.-P.; Fu, Y.; Wang, Y.-F.
Angew. Chem., Int. Ed. 2022, Early View.
DOI: 10.1002/anie.202201329

論文著者の紹介

研究者:Feng-Lian Zhang
研究者の経歴:
2015 Ph.D., Nanyang Technological University, Singapore (Prof. S. Chiba)
2016–2019 Postdoc, University of Science and Technology of China, China (Prof. Y.-F. Wang)
2019– Research Assistant Professor, University of Science and Technology of China, China (Prof. Y.-F. Wang)
研究内容:ルイス塩基ホウ素ラジカルの新規反応性の解明

研究者:Yi-Feng Wang
研究者の経歴:
2003 B.S., Central China Normal University, China
2006 M.S., Nankai University, China (Prof. H. Yang)
2010 Ph.D., Nanyang Technological University, Singapore (Profs. K. Narasaka and S. Chiba)
2011–2015 Research Fellow, Nanyang Technological University, Singapore (Prof. S. Chiba)
2015– Professor, University of Science and Technology of China, China
研究内容:ルイス塩基ホウ素ラジカルの新規反応性の解明

研究者:Yao Fu
研究者の経歴:
2000 B.S., University of Science and Technology of China, China
2005 Ph.D., University of Science and Technology of China, China (Prof. G. Qingxiong)
2005–2010 Associate Professor, University of Science and Technology of China, China
2010– Professor, University of Science and Technology of China, China
研究内容:計算化学、遷移金属触媒を用いた有機合成、グリーンケミストリーにおける新規反応や触媒開発

論文の概要

4-ジメチルアミノピリジンボラン(DMAP-BH3)、1,2-ビス(tert-ブチルオキシ)ジアゼン(TBHN)、ベンゼンチオール(PhSH)存在下、アセトニトリル中、60 °Cでα-ヒドロキシカルボン酸誘導体(主にアミド、活性基はAcもしくはMs基)1に対し、アルケン2を作用させることで、アルキル化体3が得られる(図 2A)。本反応は乳酸から合成したアミドにも適用でき3aへと導いた。その他にコレステロール由来のアミド、マレイン酸由来のエステルもアルキル化により、それぞれ3b, 3cが得られた(Z=Ac)。α-ヒドロキシエステルの場合は、Z=Msとすることで、血管拡張薬cyclandelateのアルキル化も進行し3dを与えた。
反応機構はラジカルクロック実験やDFT計算により、次のように推定した。まず、DMAP-BH3とラジカル開始剤TBHNからDMAP-ボリルラジカルが生成し、1のカルボニルを一電子還元する。続くSCS機構により、α-カルボニルラジカル中間体を生じ、これがアルケン2と反応することで、アルキル化体3を与える。
本反応のDMAP-ボリルラジカルによる1のカルボニル基の一電子還元では、SOMO/LUMOエネルギーギャップが関与する(図2B)。アミド4とアルケン5を用いたα位アルキル化では、4の置換基R1、R2の電子求引性が強いほど、SOMO/LUMOエネルギーギャップは小さく、一電子還元が進行してSCS機構によりアルキル化体6を与える。なお、置換基R1をエステルにすると(電子求引性を高める)、よりSOMO/LUMOエネルギーギャップが小さくなり、OTs基やOMs基のみならず、OAc基の切断が可能になる(低収率ではあるがOH基も)。

図2. (A) 基質適用範囲(B) アミド4の置換基とSOMO/LUMOギャップの関係

以上著者らは、α-ヒドロキシカルボン酸のアルキル化を報告した。SCS機構を巧みに操ることで、さらなる不活性結合の官能基化が期待できる。

参考文献

  1. (a)Lutsker, E.; Reiser, O. Synthesis of Chiral Tetrahydrofurans and Pyrrolidines by Visible-Light-Mediated Deoxygenation. J. Org. Chem. 2017, 2017, 2130–2138. DOI: 10.1002/ejoc.201700014 (b) Rackl, D.; Kais, V.; Kreitmeier, P.; Reiser, O. Visible Light Photoredox-Catalyzed Deoxygenation of Alcohols. Beilstein J. Org. Chem. 2014, 10, 2157–2165. DOI: 10.3762/bjoc.10.223 (c) Cai, A.; Yan, W.; Liu, W. Aryl Radical Activation of C–O Bonds: Copper-Catalyzed Deoxygenative Difluoromethylation of Alcohols. J. Am. Chem. Soc. 2021, 143, 9952−9960. DOI: 10.1021/jacs.1c04254 (d) Dong, Z.; MacMillan, D. W. C. Metallaphotoredox-enabled Deoxygenative Arylation of Alcohols. Nature 2021, 598, 451−456. DOI: 10.1038/s41586-021-03920-6 (e) Gao, M.; Sun, D.; Gong, H. Ni-Catalyzed Reductive C–O Bond Arylation of Oxalates Derived from α-Hydroxy Esters with Aryl Halides. Org. Lett. 2019, 21, 1645–1648. DOI: 10.1021/acs.orglett.9b00174 (f) Monteith, J. J.; Rousseaux, S. A. L. Ni-Catalyzed C(sp3)–O Arylation of α-Hydroxy Esters. Org. Lett. 2021, 23, 9485–9489. DOI: 10.1021/acs.orglett.1c03674 (g) Ran, C.-K.; Niu, Y.-N.; Song, L.; Wei, M.-K.; Cao, Y.-F.; Luo, S.-P.; Yu, Y.-M.; Liao, L.-L.; Yu, D.-G. Visible-Light PhotoredoxCatalyzed Carboxylation of Activated C(sp3 )–O Bonds with CO2. ACS Catal. 2022, 12, 18–24. DOI: 10.1021/acscatal.1c04921
  2. Yu, Y. J.; Zhang, F. L.; Peng, T. Y.; Wang, C. L.; Cheng, J.; Chen, C.; Houk, K. N.; Wang, Y.-F. Sequential C–F Bond Functionalizations of Trifluoroacetamides and Acetates via Spin-center Shifts. Science 2021, 371, 1232– DOI: 10.1126/science.abg0781
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 日本初の化学専用オープンコミュニティ、ケムステSlack始動!
  2. 企業の組織と各部署の役割
  3. 三つの環を一挙に構築! caulamidine 類の不斉全合成
  4. 典型元素触媒による水素を還元剤とする第一級アミンの還元的アルキル…
  5. Dead Endを回避せよ!「全合成・極限からの一手」④(解答編…
  6. 新規重水素化触媒反応を開発―医薬品への直接重水素導入を達成―
  7. 安価な金属触媒でアルケンの高活性ヒドロシリル化を達成
  8. タミフルの新規合成法・その3

注目情報

ピックアップ記事

  1. 水の電気分解に適した高効率な貴金属フリーの電極が開発される:太陽光のエネルギーで水素を発生させる方法
  2. 専門用語(科学英単語)の発音
  3. 大型リチウムイオン電池及び関連商品・構成材料の開発【終了】
  4. 持田製薬/エパデールのスイッチOTC承認へ
  5. マテリアルズ・インフォマティクスの導入・活用・推進におけるよくある失敗とその対策とは?
  6. 化学物質の環境リスクを学べる「かんたん化学物質ガイド」開設
  7. 前代未聞のねつ造論文 学会発表したデータを基に第三者が論文を発表
  8. 多孔性材料の動的核偏極化【生体分子の高感度MRI観測への一歩】
  9. クロロ(1,5-シクロオクタジエン)イリジウム(I) (ダイマー):Chloro(1,5-cyclooctadiene)iridium(I) Dimer
  10. 【酵素模倣】酸素ガスを用いた MOF 内での高スピン鉄(IV)オキソの発生

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年6月
 12345
6789101112
13141516171819
20212223242526
27282930  

注目情報

最新記事

MEDCHEM NEWS 34-1 号「創薬を支える計測・検出技術の最前線」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

医薬品設計における三次元性指標(Fsp³)の再評価

近年、医薬品開発において候補分子の三次元構造が注目されてきました。特に、2009年に発表された論文「…

AI分子生成の導入と基本手法の紹介

本記事では、AIや情報技術を用いた分子生成技術の有機分子設計における有用性や代表的手法について解説し…

第53回ケムステVシンポ「化学×イノベーション -女性研究者が拓く未来-」を開催します!

第53回ケムステVシンポの会告です!今回のVシンポは、若手女性研究者のコミュニティと起業支援…

Nature誌が発表!!2025年注目の7つの技術!!

こんにちは,熊葛です.毎年この時期にはNature誌で,その年注目の7つの技術について取り上げられま…

塩野義製薬:COVID-19治療薬”Ensitrelvir”の超特急製造開発秘話

新型コロナウイルス感染症は2023年5月に5類移行となり、昨年はこれまでの生活が…

コバルト触媒による多様な低分子骨格の構築を実現 –医薬品合成などへの応用に期待–

第 642回のスポットライトリサーチは、武蔵野大学薬学部薬化学研究室・講師の 重…

ヘム鉄を配位するシステイン残基を持たないシトクロムP450!?中には21番目のアミノ酸として知られるセレノシステインへと変異されているP450も発見!

こんにちは,熊葛です.今回は,一般的なP450で保存されているヘム鉄を配位するシステイン残基に,異な…

有機化学とタンパク質工学の知恵を駆使して、カリウムイオンが細胞内で赤く煌めくようにする

第 641 回のスポットライトリサーチは、東京大学大学院理学系研究科化学専攻 生…

CO2 の排出はどのように削減できるか?【その1: CO2 の排出源について】

大気中の二酸化炭素を減らす取り組みとして、二酸化炭素回収·貯留 (CCS; Carbon dioxi…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー