[スポンサーリンク]

化学者のつぶやき

エーテルがDiels–Alder反応?トリチルカチオンでin situ 酸化DA!

[スポンサーリンク]

銅触媒とトリチルカチオンによるエーテルとヘテロジエンとの不斉Diels–Alder反応が開発された。トリチルカチオンがエーテルを脱ヒドリド化しエノールエーテルを反応系中で生成することが本手法の鍵である。広範なジヒドロピラン類が簡便に合成できる。

トリチルカチオンによる脱ヒドリド化反応

ジヒドロピランは天然有機化合物や医薬品に頻出する重要骨格である。ジヒドロピラン類の合成法として、キラル分子触媒を用いたα,β-不飽和カルボニル(ヘテロジエン)とジエノフィルの不斉ヘテロDiels–Alder反応が知られる[1]。なかでもCu–BOX触媒(BOX= ビスオキサゾリン)によるヘテロジエンとエノールエーテルとの立体選択的なヘテロDiels–Alder反応が多く報告されてきた(図1A)[1]。Cu–BOX錯体がルイス酸として働き、ヘテロジエンの酸素原子に配位することで立体選択性が発現する。同様の反応はこれまでに多く報告されているが、エノールエーテルは市販品が少なく、それらの合成及び精製はしばしば困難を伴うという課題がある[1,2]
この課題を解決するため、本論文著者の和佐らは入手容易で化学的に安定なエーテルを原料とし、反応系中でエノールエーテルへ酸化することを考えた。これに際し、トリチルカチオンに着目した。トリチルカチオンはアセタールやエーテルの酸素原子のα位C–Hを脱ヒドリド化できることが知られる(図1B)[3]。トリチルカチオンを用いて反応系中でエーテルを酸化し、生じたエノールエーテルがCu–BOX錯体存在下立体選択的なヘテロDiels–Alder反応すれば、様々なジヒドロピラン類を生成できると推定した(図1C)。この考えのもと、著者らはCu–BOX触媒と酢酸トリチル存在下、エーテルとヘテロジエンを用いる不斉ヘテロDiels–Alder反応を開発したので紹介する。

図1. (A) Cu–BOX錯体を用いたヘテロDiels–Alder反応 (B) トリチルカチオンによる脱ヒドリド化反応 (C) 今回の研究

 

Enantioselective Organocopper-Catalyzed Hetero Diels–Alder Reaction through in Situ Oxidation of Ethers into Enol Ethers
Yesilcimen, A.; Jiang, N.-C.; Gottlieb, F. H.; Wasa, M. J. Am. Chem. Soc. 2022, 144, 6173–6179.
DOI: 10.1021/jacs.2c01656

論文著者の紹介

研究者 : Masayuki Wasa
研究者の経歴:
2006 B.S. Brandeis University, USA
2013 Ph.D, The Scripps Research Institute, USA (Prof. Jin-Quan Yu)
2013–2015 JSPS Postdoctoral Fellow, Harvard University, USA (Prof. Eric N. Jacobsen)
2015– Assistant Professor, Boston College, USA
研究内容:FLPを用いたC–C、C–ヘテロ原子結合形成反応の開発

論文の概要

著者らは、次のような作業仮説を立案した(図2A)。まず、トリチル化合物1と銅触媒2(L–CuX2)からトリチルカチオンが生じる。トリチルカチオンがエーテル3を脱ヒドリド化してオキソカルベニウムカチオン4を生成し、続く脱プロトン化によりエノールエーテル5を与える。最後に、5が銅触媒存在下ヘテロジエン6と立体選択的なヘテロDiels–Alder反応して、ジヒドロピラン7が得られると考えた。
条件検討の結果、Cu–BOX触媒2Aと酢酸トリチルを用いると、エーテル3 (4当量)とヘテロジエン6との不斉Diels–Alder反応が進行し、高いエナンチオ選択性でジヒドロピラン7が得られることを見いだした(図2B)。本反応では鎖状エーテル3aやテトラヒドロピラン(3b)、THF(3c)が適用でき、高エナンチオ選択性で7a7cを与えた。この際、7cは高endo選択的に得られたが、7a, 7bではendo/exo選択性は低かった。THF-d8も反応に適用でき、重水素化された生成物7dが得られた。対応するジヒドロフラン-d6は調製が困難であり、この例は本反応の有用性を示す結果と言える。また、キラルエーテルを用いても反応が進行しendo7eが優先して得られた。ヘテロジエンのβ位にメチル基をもつ基質を用いても反応が進行した(7f)。
本反応で鎖状エーテルを用いた際、syn体のみが得られたことから、本反応ではZ体のエノールエーテルのみが反応すると考えられる。比較対照実験として、事前調製した(E)-エノールエーテル(E)-5gをヘテロDiels–Alder反応条件に付したところ、syn7gが高収率で得られた(図2C)。この結果から、本ヘテロDiels–Alder反応では、エーテルの脱ヒドリド化で(E)-エノールエーテルが生成しても、Z体へ異性化したのちにヘテロDiels–Alder反応すると著者らは結論づけている。実際に、著者らは銅触媒2A存在下(E)-5gZ体に異性化することを確認している。

図2. (A) 推定反応機構 (B) 基質適用範囲 (C) (E)-エノールエーテルを用いたヘテロDiels–Alder反応

 

以上、トリチルカチオンによる脱ヒドリド化反応を鍵とした立体選択的なジヒドロピラン類の合成法を開発した。入手容易なエーテルを用いることを可能にした本ヘテロDiels–Alder反応は、今後天然物や医薬品などの生物活性物質の合成に適用されると期待できる。

参考文献

  1. (a) Desimoni, G.; Faita, G.; Quadrelli, P. Forty Years after “Heterodiene Syntheses with α, β-Unsaturated Carbonyl Compounds”: Enantioselective Syntheses of 3,4-Dihydropyran Derivatives. Chem. Rev. 2018, 118, 2080–2248. DOI: 1021/acs.chemrev.7b00322 (b) Reymond, S.; Cossy, J. Copper-Catalyzed Diels–Alder Reactions. Chem. Rev. 2008, 108, 5359–5406. DOI: 10.1021/cr078346g (c) Esquivias, J.; Arrayás, R. G.; Carretero, J. C. Catalytic Asymmetric Inverse-Electron-Demand Diels–Alder Reaction of N-Sulfonyl-1-Aza-1,3-Dienes. J. Am. Chem. Soc. 2007, 129, 1480–1481. DOI: 10.1021/ja0658766 (d) Evans, D. A.; Johnson, J. S. Catalytic Enantioselective Hetero Diels–Alder Reactions of α, β-Unsaturated Acyl Phosphonates with Enol Ethers. J. Am. Chem. Soc. 1998, 120, 4895–4896. DOI: 10.1021/ja980423p (e) Thorhauge, J.; Johannsen, M.; Jørgensen, K. A. Highly Enantioselective Catalytic Hetero-Diels–Alder Reaction with Inverse Electron Demand. Angew. Chem., Int. Ed. 1998, 37, 2404–2406. DOI: 10.1002/(SICI)1521-3773(19980918)37:17<2404::AID-ANIE2404>3.0.CO;2-D (f) Evans, D. A.; Johnson, J. S.; Olhava, E. J. Enantioselective Synthesis of Dihydropyrans. Catalysis of Hetero Diels–Alder Reactions by Bis(oxazoline) Copper(II) Complexes. J. Am. Chem. Soc. 2000, 122, 1635–1649. DOI: 10.1021/ja992175i (g) Stavenger, R. A.; Schreiber, S. L. Asymmetric Catalysis in Diversity-Oriented Organic Synthesis: Enantioselective Synthesis of 4320 Encoded and Spatially Segregated Dihydropyrancarboxamides. Angew. Chem., Int. Ed. 2001, 40, 3417–3421. DOI: 10.1002/1521-3773(20010917)40:18<3417::AID-ANIE3417>3.0.CO;2-E (h) Gademann, K.; Chavez, D. E.; Jacobsen, E. N. Highly Enantioselective Inverse-Electron-Demand Hetero-Diels–Alder Reactions of α, β-Unsaturated Aldehydes. Angew. Chem., Int. Ed. 2002, 41, 3059–3061. DOI: 10.1002/1521-3773(20020816)41:16<3059::AID-ANIE3059>3.0.CO;2-I(i) Chen, J.-B.; Xu, M.; Zhang, J.-Q.; Sun, B.-B.; Hu, J.-M.; Yu, J.-Q.; Wang, X.-W.; Xia, Y.; Wang, Z. Modular Chiral Bisoxalamide−Copper-Catalyzed Asymmetric Oxo-Diels–Alder Reaction: Carbonyl Coordination for High Enantio- and Diastereocontrols. ACS Catal. 2020, 10, 3556–3563. DOI:10.1021/acscatal.9b05606 (j) Hong, Y.; Cui, T.; Ivlev, S.; Xie, X.; Meggers, E. Chiral-at-Iron Catalyst for Highly Enantioselective and Diastereoselective Hetero-Diels–Alder Reaction. Chem. Eur. J. 2021, 27, 8557–8563. DOI: 10.1002/chem.202100703 (k) Akiyama, T.; Morita, H.; Fuchibe, K. Chiral Brønsted Acid-Catalyzed Inverse Electron-Demand Aza Diels–Alder Reaction. J. Am. Chem. Soc. 2006, 128, 13070–13071. DOI: 10.1021/ja064676r
  2. Winternheimer, D. J.; Shade, R. E.; Merlic, C. A. Methods for Vinyl Ether Synthesis. Synthesis 2010, 15, 2497–2511. DOI: 1055/s-0030-1258166
  3. Ma, Y.; Loub, S.-J.; Hou, Z. Electron-Deficient Boron-Based Catalysts for C–H Bond Functionalisation. Chem. Soc. Rev. 2021, 50, 1945–1967. DOI:1039/d0cs00380h
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. その置換基、パラジウムと交換しませんか?
  2. (+)-11,11′-Dideoxyverticil…
  3. 第一手はこれだ!:古典的反応から最新反応まで|第6回「有機合成実…
  4. 原子量に捧げる詩
  5. 周期表の歴史を振り返る【周期表生誕 150 周年特別企画】
  6. ライトケミカル工業株式会社ってどんな会社?
  7. Slow down, baby, now you’r…
  8. 「もはや有機ではない有機材料化学:フルオロカーボンに可溶な材料の…

注目情報

ピックアップ記事

  1. クラリベイト・アナリティクスが「引用栄誉賞2018」を発表
  2. 第54回国際化学オリンピックが開催、アジア勢が金メダルを独占
  3. 米化学大手デュポン、EPAと和解か=新生児への汚染めぐり
  4. 三種類の分子が自発的に整列した構造をもつ超分子共重合ポリマーの開発
  5. ネッド・シーマン Nadrian C. Seeman
  6. 大学院生のつぶやき:研究助成の採択率を考える
  7. サリドマイドの治験、22医療機関で 製薬会社が発表
  8. アルカロイド骨格を活用した円偏光発光性8の字型分子の開発 ~天然物化学と光材料化学の融合~
  9. ペイドン・ヤン Peidong Yang
  10. 高電気伝導性を有する有機金属ポリイン単分子ワイヤーの開発

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年6月
 12345
6789101112
13141516171819
20212223242526
27282930  

注目情報

最新記事

植物由来アルカロイドライブラリーから新たな不斉有機触媒の発見

第632回のスポットライトリサーチは、千葉大学大学院医学薬学府(中分子化学研究室)博士課程後期3年の…

MEDCHEM NEWS 33-4 号「創薬人育成事業の活動報告」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

第49回ケムステVシンポ「触媒との掛け算で拡張・多様化する化学」を開催します!

第49回ケムステVシンポの会告を致します。2年前(32回)・昨年(41回)に引き続き、今年も…

【日産化学】新卒採用情報(2026卒)

―研究で未来を創る。こんな世界にしたいと理想の姿を描き、実現のために必要なものをうみだす。…

硫黄と別れてもリンカーが束縛する!曲がったπ共役分子の構築

紫外光による脱硫反応を利用することで、本来は平面であるはずのペリレンビスイミド骨格を歪ませることに成…

有機合成化学協会誌2024年11月号:英文特集号

有機合成化学協会が発行する有機合成化学協会誌、2024年11月号がオンライン公開されています。…

小型でも妥協なし!幅広い化合物をサチレーションフリーのELSDで検出

UV吸収のない化合物を精製する際、一定量でフラクションをすべて収集し、TLCで呈色試…

第48回ケムステVシンポ「ペプチド創薬のフロントランナーズ」を開催します!

いよいよ本年もあと僅かとなって参りましたが、皆様いかがお過ごしでしょうか。冬…

3つのラジカルを自由自在!アルケンのアリール–アルキル化反応

アルケンの位置選択的なアリール–アルキル化反応が報告された。ラジカルソーティングを用いた三種類のラジ…

【日産化学 26卒/Zoomウェビナー配信!】START your ChemiSTORY あなたの化学をさがす 研究職限定 キャリアマッチングLIVE

3日間で10領域の研究職社員がプレゼンテーション!日産化学の全研究領域を公開する、研…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP