[スポンサーリンク]

化学者のつぶやき

配位子を着せ替え!?クロースカップリング反応

[スポンサーリンク]

三級アルキルブロミドと種々のアリール求電子剤とのクロスカップリング反応が開発された。ニッケルの配位子を系中で交換させることがC–C結合形成の鍵である。

ニッケル触媒を用いた求電子剤同士のクロスカップリング反応

求電子剤同士でのクロスカップリング反応(XEC反応)は求核剤を調製せずにC–C結合を形成できる強力な手法である。主にピリジル配位子をもつニッケル触媒存在下、アルキルハライドとアリール求電子剤を反応させるとC(sp3)–C(sp2)結合形成ができる(図1A)[1]。四級炭素を構築できる有効な手法だが、アリールクロリドやアリールトリフラートを用いたXEC反応は未発展である。また三級アルキルハライドとのカップリングでは、これまで電子不足なアリールブロミドもしくはアリールヨージドしか利用できなかった[2]
XEC反応はアルキルハライドとNi(I)の反応により生成するラジカルと、アリールハライドがNi(0)に酸化的付加した後の錯体とが反応して、クロスカップリング生成物を与えると考えられてきた。中間体のニッケル錯体が不安定なため反応機構解明は困難であったが、ごく最近複数のグループから、還元条件におけるXEC反応ではNi(I)のみが求電子剤と反応することが提唱された[3]
オハイオ州立大学のSevovらは、XEC反応がNi(I)と同程度の反応速度で反応する2つの求電子剤の間で起こりやすいと推測した(図1B)。実際に、Ni(I)と反応性の高い三級アルキルブロミドや、反応性の低いアリールクロリドとアリールトリフラートではXEC反応が起こりにくい。このような基質適用範囲の制限を改善するため、著者らはNi(0)に改めて着目した。Ni(0)はアルキルハライドとの反応によるラジカル生成よりも、種々のアリール求電子剤の酸化的付加を優先的に起こす。このNi(0)を利用することで、従来想定されていたNi(0)とNi(I)が共存するXEC反応を実現できると期待される。しかし、還元条件下でNi(I)を経由せずにNi(0)を生成することは困難である。ピリジル配位子をもつNi(II)は一電子が関与する酸化還元反応を起こしやすく、また、Ni(0)はNi(II)と均化し容易にNi(I)を与える。一方で、ホスフィン配位子を有するニッケル錯体はNi(I)を生成しにくいことが知られる[4]。そこで、著者らは反応系中でNi上の配位子を交換し、Ni(0)とNi(I)を共存させることを考えた。つまり、ピリジル配位子をもつNi(I)がアルキルブロミドと反応し、続いて配位子交換によりホスフィン配位子が配位したNi(0)がアリール求電子剤と反応することで、XEC反応が進行すると期待した(図1C)。実際に、著者らは反応系中でのニッケル触媒の配位子の交換を実現し、電解反応によって三級アルキルブロミドと種々のアリール求電子剤とのXEC反応が進行することを見いだした(図1D)。

図1. (A) XEC反応、(B) Ni(I)と各求電子剤の反応性、(C) 各求電子剤の活性化法、(D) アリール求電子剤と三級アルキルブロミドとのXEC反応

 

“Controlling Ni redox states by dynamic ligand exchange for electroreductive Csp3–Csp2 coupling”
Hamby, T. B.; LaLama, M. J.; Sevov, C. S. Science 2022, 376, 410–416.
DOI: 10.1126/science.abo0039

論文著者の紹介

研究者:Christo S. Sevov

研究者の経歴:
2005–2009 B.Sc. in Chemistry, University of Notre Dame, USA (Prof. Olaf G. Wiest)
2009–2011 University of Illinois Urbana-Champaign, USA (Prof. John F. Hartwig)
2011–2014 Ph.D. in Chemistry, University of California, Berkeley, USA (Prof. John F. Hartwig)
2014–2017 Postdoc, University of Michigan, USA (Prof. Melanie S. Sanford)
2017–                             Assistant Professor, The Ohio State University, USA

研究内容:有機金属化学、電気化学

論文の概要

検討の結果、著者らはピリジル配位子(bpp)をもつマンガン触媒とホスフィン配位子(iPrQ)をもつニッケル触媒存在下、電解反応により三級アルキルブロミドと種々の求電子剤のXEC反応が進行することを見いだした(図 2A)。メトキシ基を有するアリールブロミド(3a)のほか、インドール骨格のアリールブロミド(3b)やビニルブロミド(3c)も利用できた。ボリル基を有するアリールクロリド(3d)では化学選択的にXEC反応が進行し、抗炎症薬であるインドメタシンも中程度の収率で3eを与えた。また、本反応はアリールトリフラートやアルケニルトリフラートにも適用でき、天然物誘導体においてもカップリング反応が進行して3f3gが得られた。なお、アリールクロリドやアリールトリフラートの反応では、三級アルキルブロミドだけでなく二級アルキルブロミドともXEC反応が進行した。
反応機構は次のように提唱されている(図 2B)。まず、ピリジル配位子を有するニッケル触媒Ni1の一電子還元、続くホスフィン配位子との配位子交換が進行し、安定な0価のニッケル錯体Ni2が生じる。続いてアリール求電子剤1の酸化的付加によりNi3となった後に、再び配位子交換をすることでNi4が生成する。最後に三級アルキルブロミドが1価のニッケル錯体に還元されて生じたアルキルラジカル2′Ni4が反応することで、クロスカップリング体3が得られる。なお、各種機構解明実験により、1) 電解条件下Ni1からNi2が生成すること、2) 三級アルキルブロミド共存下Ni2がアリールブロミドと優先的に反応しNi3を与えること、3) Ni3と三級アルキルブロミドの反応はほとんど進行しないこと、4) Ni3とピリジル配位子(bpp)からNi4が生成し、三級アルキルブロミドとの反応により3が得られることが示されている(詳細は本文参照)。

図2. (A) 最適条件と基質適用範囲 (B) 推定反応機構

 

以上、著者らは反応系中でニッケル触媒の配位子交換をすることで、これまで達成されていなかった求電子剤のXEC反応を進行させた。金属上の配位子を「着せ替える」ようにスムーズな配位子交換が実現されており、同様の配位子交換による更なるXEC反応の発展が期待される。

 参考文献

  1. (a) Wang, X.; Dai, Y.; Gong, H. Nickel-Catalyzed Reductive Couplings. Curr. Chem. 2016, 374, 43. DOI: 10.1007/s41061-016-0042-2 (b) Weix, D. J. Methods and Mechanisms for Cross-Electrophile Coupling of Csp2 Halides with Alkyl Electrophiles. Acc. Chem. Res. 2015, 48, 1767–1775. DOI: 10.1021/acs.accounts.5b00057
  2. 数少ない3級アルキルブロミドを用いたXEC反応の例として以下の報告がある。(a) Wang, X.; Wang, S.; Xue, W.; Gong, H. Nickel-Catalyzed Reductive Coupling of Aryl Bromides with Tertiary Alkyl Halides. J. Am. Chem. Soc. 2015, 137, 11562–11565. DOI: 10.1021/jacs.5b06255 (b) Wang, X.; Ma, G.; Peng, Y.; Pitsch, C. E.; Moll, B. J.; Ly, T. D.; Wang, X.; Gong, H. Ni-Catalyzed Reductive Coupling of Electron-Rich Aryl Iodides with Tertiary Alkyl Halides. J. Am. Chem. Soc. 2018, 140, 14490–14497. DOI: 10.1021/jacs.8b09473 (c) Liu, J.; Ye, Y.; Sessler, J. L.; Gong, H. Cross-Electrophile Couplings of Activated and Sterically Hindered Halides and Alcohol Derivatives. Acc. Chem. Res. 2020, 53, 1833–1845. DOI: 10.1021/acs.accounts.0c00291
  3. (a) Kawamata, Y.; Vantourout, J. C.; Hickey, D. P.; Bai, P.; Chen, L.; Hou, Q.; Qiao, W.; Barman, K.; Edwards, M. A.; Garrido-Castro, A. F.; deGruyter, J. N.; Nakamura, H.; Knouse, K.; Qin, C.; Clay, K. J.; Bao, D.; Li, C.; Starr, J. T.; Garcia-Irizarry, C.; Sach, N.; White, H. S.; Neurock, M.; Minteer, S. D.; Baran, P. S. Electrochemically Driven, Ni-Catalyzed Aryl Amination: Scope, Mechanism, and Applications. J. Am. Chem. Soc. 2019, 141, 6392–6402. DOI: 10.1021/jacs.9b01886 (b) Till, N. A.; Oh, S.; MacMillan, D. W. C.; Bird, M. J. The Application of Pulse Radiolysis to the Study of Ni(I) Intermediates in Ni-Catalyzed Cross-Coupling Reactions. J. Am. Chem. Soc. 2021, 143, 9332–9337. DOI: 10.1021/jacs.1c04652 (c) Sun, R.; Qin, Y.; Nocera, D. G. General Paradigm in Photoredox Nickel‐Catalyzed Cross‐Coupling Allows for Light‐Free Access to Reactivity. Angew. Chem., Int. Ed. 2020, 59, 9527–9533. DOI: 10.1002/anie.201916398
  4. Kalvet, I.; Guo, Q.; Tizzard, G. J.; Schoenebeck, F. When Weaker Can Be Tougher: The Role of Oxidation State (I) in P- vs N-Ligand-Derived Ni-Catalyzed Trifluoromethylthiolation of Aryl Halides. ACS Catal. 2017, 7, 2126–2132. DOI: 1021/acscatal.6b03344
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 工学的応用における小分子キラリティーの付加価値: Nature …
  2. 研究者1名からでも始められるMIの検討-スモールスタートに取り組…
  3. 有機無機ハイブリッドペロブスカイトはなぜ優れているのか?
  4. ぼくらを苦しめる「MUST (NOT)」の呪縛
  5. 水素製造に太陽光エネルギーを活用 -エタノールから水素を獲得し水…
  6. 「一置換カルベン種の単離」—カリフォルニア大学サンディエゴ校・G…
  7. 自己修復性高分子研究を異種架橋高分子の革新的接着に展開
  8. オープンアクセス論文が半数突破か

注目情報

ピックアップ記事

  1. 青色発光ダイオードの赤﨑勇氏らに京都賞
  2. マテリアルズ・インフォマティクスの推進成功事例セミナー
  3. 大鵬薬品、米社から日本での抗癌剤「アブラキサン」の開発・販売権を取得
  4. Reaxys PhD Prize 2016ファイナリスト発表!
  5. 世界的性能の質量分析器開発を開始
  6. 第31回光学活性化合物シンポジウム
  7. 学術論文を書くときは句動詞に注意
  8. 1,3-ジオールの不斉非対称化反応による光学活性オキサゾリン誘導体の合成
  9. ナノテクノロジー関連の特許が多すぎる問題
  10. カイニン酸 kainic acid

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年6月
 12345
6789101112
13141516171819
20212223242526
27282930  

注目情報

最新記事

MEDCHEM NEWS 34-1 号「創薬を支える計測・検出技術の最前線」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

医薬品設計における三次元性指標(Fsp³)の再評価

近年、医薬品開発において候補分子の三次元構造が注目されてきました。特に、2009年に発表された論文「…

AI分子生成の導入と基本手法の紹介

本記事では、AIや情報技術を用いた分子生成技術の有機分子設計における有用性や代表的手法について解説し…

第53回ケムステVシンポ「化学×イノベーション -女性研究者が拓く未来-」を開催します!

第53回ケムステVシンポの会告です!今回のVシンポは、若手女性研究者のコミュニティと起業支援…

Nature誌が発表!!2025年注目の7つの技術!!

こんにちは,熊葛です.毎年この時期にはNature誌で,その年注目の7つの技術について取り上げられま…

塩野義製薬:COVID-19治療薬”Ensitrelvir”の超特急製造開発秘話

新型コロナウイルス感染症は2023年5月に5類移行となり、昨年はこれまでの生活が…

コバルト触媒による多様な低分子骨格の構築を実現 –医薬品合成などへの応用に期待–

第 642回のスポットライトリサーチは、武蔵野大学薬学部薬化学研究室・講師の 重…

ヘム鉄を配位するシステイン残基を持たないシトクロムP450!?中には21番目のアミノ酸として知られるセレノシステインへと変異されているP450も発見!

こんにちは,熊葛です.今回は,一般的なP450で保存されているヘム鉄を配位するシステイン残基に,異な…

有機化学とタンパク質工学の知恵を駆使して、カリウムイオンが細胞内で赤く煌めくようにする

第 641 回のスポットライトリサーチは、東京大学大学院理学系研究科化学専攻 生…

CO2 の排出はどのように削減できるか?【その1: CO2 の排出源について】

大気中の二酸化炭素を減らす取り組みとして、二酸化炭素回収·貯留 (CCS; Carbon dioxi…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー