[スポンサーリンク]

スポットライトリサーチ

表面酸化した銅ナノ粒子による低温焼結に成功~銀が主流のプリンテッドエレクトロニクスに、銅という選択肢を提示~

[スポンサーリンク]

第393回のスポットライトリサーチは、北海道大学 大学院工学院 材料科学専攻 マテリアル設計講座 先進材料ハイブリッド工学研究室(米澤研)に在籍されていた戸倉 凜太郎(とくら りんたろう)さんにお願いしました。

米澤研究室では、⾦属や⾦属酸化物を主に炭素・半導体・有機分⼦・⾼分⼦などと複合化したハイブリッド材料の創製と応用について研究されております。具体的には、新しい金属ナノ粒子の合成方法の開発やその挙動の理解、電子材料をはじめとする用途開発などを行っています。プレスリリースの研究は銅ナノ粒子についてで、銅は導電性ペーストとして幅広く使われている銀より安価であるものの、自然酸化しやすいため有機分子による厚い表面の保護が必要で、その分高い導電性が得られにくい短所がありました。そこで本研究では、比較的大きな粒子径をもつ銅ナノ粒子を用いてその結晶構造・酸化状態を制御し、低温の焼成でも高い導電性が得られることを見出しました。

この研究成果は、「Materials Advances」誌およびプレスリリースに公開されています。

The role of surface oxides and stabilising carboxylic acids of copper nanoparticles during low-temperature sintering

Rintaro Tokura, Hiroki Tsukamoto, Tomoharu Tokunaga, Mai Thanh Nguyen and Tetsu Yonezawa

Mater. Adv., 2022,
DOI: 10.1039/D1MA01242H

研究室を主宰されている教授の米澤 徹先生より、戸倉さんについてコメントを頂戴いたしました!

戸倉凜太郎さんは、3年生までいわゆる「金属工学」を勉強してきました。相図や弾塑性学などを勉強していたのですが、ナノ材料に非常に興味をもち、研究室に来ました。入室してから、有機化合物の性質、コロイド科学で重要な微粒子の分散・凝集について実験をしながら自分でコツコツと勉強していきました。そして、4年生から修士課程にかけて、アルキルカルボン酸を使った安定な銅微粒子の合成、電子顕微鏡像の取得および解析を行っていきました。また、微粒子の分散安定化についても、微粒子を凝集させないでビーズの効率のよい分離法の開拓など細かい実験条件を詰めて、よいペーストづくりに成功しました。戸倉さんはその中でも電子顕微鏡による粒子解析にとても興味をもって、結晶の立体構造を頭に描きながら、写真にある原子の並びについて解析していきました。この研究は、金属微粒子ペーストづくりという一見すると応用よりの研究ですが、必ず新しいことは基礎的な部分にあると伝えていたことを実践してくれました。とても新しい材料ができたと思います。

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

Cu64Oという銅の微酸化物で覆われた銅微粒子を、被覆しているアルキルカルボン酸と相互作用させることで低温焼結を実現した研究です。

本研究の銅微粒子は、金属粒子を含むペーストを印刷し焼結することで導電回路を形成できるプリンテッドエレクトロニクス(PE)に用いられるものです。近年のメタル価格上昇によって、貴金属の金や銀より安価な銅が注目されていますが容易に安定なCu2OやCuOに酸化してしまうことが重大な懸念事項です。それに対して本研究では、一般的に聞き慣れないCu64Oという微酸化物で粒子表面が覆われています。この微酸化物は、粒子表面に存在するヘキサン酸によって不活性雰囲気である窒素下でも加熱時に金属銅に変わり粒子同士のネッキングを促します。また、Cu64Oの結晶構造は斜方晶でありCuは立方晶です。つまり、結晶構造が変化するため比較的低温でも銅原子が拡散しやすく粒子同士が繋がっていくと考えられるのです。

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

自分なりに工夫したところはビーズミルのビーズの分離工程です。最初は、分離がしやすいように大きめのビーズを用いて分散をしてみたのですが凝縮を解砕できていなかったり、反対に凝集体を潰してしまってフレーク状になってしまったりなど目的のよく分散したペーストが得られませんでした。試行錯誤しているうちに30μm径のビーズにたどり着きましたが、30μmのビーズはビーズというより砂のようで、メタルメッシュに垂らしても分離するにとても時間がかかってしまいました。そこで遠心力で分離してくれるようにメッシュを加工して分離専用の治具を作製しました。今まで1時間超かかっていたのが15分程度まで短縮できたので良い発明となりました。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

一番難しかったところは、粒子や焼結膜のSTEM像の分析です。Cu, Cu2O, Cu64Oの面間隔はとても大きく異なるわけではありません。面間隔を精度よく知るために、よりよいSTEM写真を得ることはもちろんのこと、交差している面の角度を測り、結晶のモデルから面が交差する角度を計算し照らし合わせることで相と面指数を同定しました。いくつもあるSTEM像から長さと角度を測ることなど、正しい結果を求める工夫をすることにでかなり時間をかけました。そのおかげでどのように酸化物が表面に分布しているか結論付けられた時は非常に努力が報われた気分でした。

銅ナノ粒子のTEM画像(出典:原著論文

Q4. 将来は化学とどう関わっていきたいですか?

化学分野と金属分野の様々な視点を持った研究者になりたいと考えています。私は、学部の専攻が化学というより金属の強度や合金などを扱う分野でした。しかし、研究室に入ってからは、扱うテーマが金属ナノ材料ということもあり有機物も取り扱うことが多くなりました。そこでは、金属の知識と有機化学の知識も必要となり、私自身が研究室名でもあるハイブリッドな人材であることが求められました。現在、私は一企業の人間ですが分野の垣根を超えて勉強し新材料の創成に携わっていきます。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

最後まで読んで頂きありがとうございました。本研究のCu64Oの活用はプリンテッドエレクトロニクスにおける銅ペーストが広く実用化されるための大きな一歩だと考えております。このように若い時から最先端の研究に携わり経験を積むことができるのは大学院生の特権でもあります。研究に近道はありません。とにかく実験とディスカッションを多く行い、1つの実験から知り得たことをたくさん見出すことが重要です!

研究者の略歴

名前:戸倉 凜太郎(とくら りんたろう)

所属:北海道大学大学院工学研究院 先進材料ハイブリッド工学研究室(当時)

2020年3月 北海道大学 工学部 応用理工系学科 応用マテリアル工学コース 卒業
2022年3月 北海道大学 大学院工学院 材料科学専攻 修士課程修了

関連リンク

Avatar photo

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. 恋する創薬研究室
  2. 第一回ケムステVプレミアレクチャー「光化学のこれから ~ 未来を…
  3. 化学ゆるキャラ大集合
  4. 塩にまつわるよもやま話
  5. マイクロフロー瞬間pHスイッチによるアミノ酸NCAの高効率合成
  6. 単結合を極める
  7. 大学院生のつぶやき:第5回HOPEミーティングに参加してきました…
  8. 製品開発職を検討する上でおさえたい3つのポイント

注目情報

ピックアップ記事

  1. SNS予想で盛り上がれ!2022年ノーベル化学賞は誰の手に?
  2. 呉羽化学、社名を「クレハ」に
  3. 未来の病気診断はケータイで!?
  4. マッテソン増炭反応 Matteson Homologation
  5. もっとも単純な触媒「プロリン」
  6. 史 不斉エポキシ化 Shi Asymmetric Epoxidation
  7. Jエナジーと三菱化が鹿島製油所内に石化製品生産設備を700億円で新設
  8. 新しい2-エキソメチレン型擬複合糖質を開発 ~触媒的な合成法確立と生物活性分子としての有用性の実証に成功~
  9. D. G. Musaev教授の講演を聴講してみた
  10. ナノ粒子で疾病の発生を容易に追跡

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年6月
 12345
6789101112
13141516171819
20212223242526
27282930  

注目情報

最新記事

有機合成化学協会誌2024年12月号:パラジウム-ヒドロキシ基含有ホスフィン触媒・元素多様化・縮環型天然物・求電子的シアノ化・オリゴペプチド合成

有機合成化学協会が発行する有機合成化学協会誌、2024年12月号がオンライン公開されています。…

「MI×データ科学」コース ~データ科学・AI・量子技術を利用した材料研究の新潮流~

 開講期間 2025年1月8日(水)、9日(木)、15日(水)、16日(木) 計4日間申込みはこ…

余裕でドラフトに収まるビュッヒ史上最小 ロータリーエバポレーターR-80シリーズ

高性能のロータリーエバポレーターで、効率良く研究を進めたい。けれど設置スペースに限りがあり購入を諦め…

有機ホウ素化合物の「安定性」と「反応性」を両立した新しい鈴木–宮浦クロスカップリング反応の開発

第 635 回のスポットライトリサーチは、広島大学大学院・先進理工系科学研究科 博士…

植物繊維を叩いてアンモニアをつくろう ~メカノケミカル窒素固定新合成法~

Tshozoです。今回また興味深い、農業や資源問題の解決の突破口になり得る窒素固定方法がNatu…

自己実現を模索した50代のキャリア選択。「やりたいこと」が年収を上回った瞬間

50歳前後は、会社員にとってキャリアの大きな節目となります。定年までの道筋を見据えて、現職に留まるべ…

イグノーベル賞2024振り返り

ノーベル賞も発表されており、イグノーベル賞の紹介は今更かもしれませんが紹介記事を作成しました。 …

亜鉛–ヒドリド種を持つ金属–有機構造体による高温での二酸化炭素回収

亜鉛–ヒドリド部位を持つ金属–有機構造体 (metal–organic frameworks; MO…

求人は増えているのになぜ?「転職先が決まらない人」に共通する行動パターンとは?

転職市場が活発に動いている中でも、なかなか転職先が決まらない人がいるのはなぜでしょう…

三脚型トリプチセン超分子足場を用いて一重項分裂を促進する配置へとペンタセンクロモフォアを集合化させることに成功

第634回のスポットライトリサーチは、 東京科学大学 物質理工学院(福島研究室)博士課程後期3年の福…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP