[スポンサーリンク]

一般的な話題

ドラッグデザインにおいてのメトキシ基

[スポンサーリンク]

 

メトキシ基 (Methoxy group, -OMe/-OCH3) は最も単純なエーテル系官能基で、医薬品や生理活性物質に頻出の構造です。適度な分子量、合成の容易さなど一見しただけでも創薬化学上の利点は思い浮かびますが、意外な特性を持つ曲者でもあります。本記事ではドラッグデザインにおけるメトキシ基の役割について、簡単に列挙します。

メトキシ基の電子効果

sp3炭素に結合した場合、メトキシ基は酸素原子の強い電気陰性度のために電子求引性誘起効果を示します。では芳香族化合物などのsp2炭素においてはどうかというと、電子供与性共鳴効果電子求引性誘起効果の2通りを示します。メトキシ基の酸素原子上には2対の非共有電子対が存在し、芳香環などと共鳴することができます。一般的に電子効果の強さは 共鳴効果 > 誘起効果 であるため、sp2炭素と共鳴可能な場合、メトキシ基は電子供与性置換基を示します。ただし、電子効果を考えるべき部位のメタ位にメトキシ基が置換した場合、共鳴効果が及ばない位置のためメトキシ基の電子効果は誘起効果のみとなります。この場合はsp3炭素に結合した場合と同様に電子求引性誘起効果を示します。この傾向は Hammett 則からも如実に見て取ることができます (下表2. OCH3 を参照。プラスの値は電子求引、マイナスの場合は電子供与に相当する)。なお、オルト置換の場合の電子効果は基本的にパラ位と同じですが、隣接位であるためにさまざまな影響が発生することがあり Hammett 則では表すことができません (これはメトキシ基に限ったことではありません)。

Chem.Rev. 1991, 91, 165より引用)

 

対象部位のパラ位に存在するメトキシ基は、比較的強力な電子供与性基であり、物性も悪くなく合成 (もしくはビルディングブロックの購入) も容易なため、構造活性相関展開をする場合の Topliss Tree においても優先順位の高い置換基となっています。

メトキシ基の疎水性

ドラッグデザインの上で重要なファクターの一つに疎水性 (脂溶性) があります。疎水効果などの結合定数に与える影響のほか、膜透過性・溶解性のような薬物動態学的な面でも疎水性パラメータには頭を悩ませられます。そこで面白いのがメトキシ基です。脂肪族メトキシ基は脂溶性の指標である LogP の値を 1 程度減少させ、アリールメトキシ基は logP にほとんど影響を与えない、という経験則が示されています (Hanschのπ、コチラの資料の7ページ目をご参照ください)。ドラッグライクな低分子化合物の指標として Lipinski の “Rule of Five” があり、ドラッグデザインにおいては無闇に脂溶性を上げないことが求められます。物性を大きく変えずに何か置換基を入れてその影響を比較したい場合、メトキシ基がファーストチョイスとして利用できると考えられます。

ただし、複素環など隣接位に相互作用可能な原子や置換基がある場合にはまたまた特殊な物性を示す場合があり、注意が必要です。
参考: メトキシ基がエチル基とほぼ同じになるとき (気ままに創薬化学 様)

メトキシ基の代謝

メトキシ基はシトクロムP450 (CYP) による第 I 相の代謝部位になりやすく、ドラッグデザインの際は代謝安定性を考える上での重要な構造でもあります。最も一般的な代謝反応は、脱メチル化によるヒドロキシ基への代謝です (図1)。基本的に代謝反応は水溶性を上げる方向に働くのですが、アリールメトキシ基が代謝されて生じるフェノール性ヒドロキシ基はキノン様のマイケルアクセプターに変換されたり、フリーラジカルを生じたりなどの有害な反応を示すこともあり、生体内ではちょっと注意が必要な置換基です。

図1 アニソールからフェノールへの代謝

そんな代謝を受けやすいメトキシ基の水素原子を重水素に置換し、代謝安定性を向上させた医薬品が上市されています。デューテトラベナジン (deutetrabenazine, Austedo®図2右) というハンチントン病治療薬がそれです。もともとテトラベナジン (図2左) という軽原子のみで構成された医薬品が治療に使われていたのですが、その二箇所のメトキシ基へ重水素が導入されたデューテトラベナジンはテトラベナジンより代謝安定性が向上したとされています。重水素化することで、代謝反応速度は軽水素化合物に比べ 〜1/10 程度まで遅くなるとされています (重水素効果)。デューテトラベナジンを含む重水素医薬品についての詳しい解説はコチラの記事をご覧ください。重メトキシ基、コストはかかりますがドラッグデザインの上では非常に興味深いです。脂溶性なんかはどうなってるんでしょうか?

図2 テトラベナジンとデューテトラベナジン

保護基としてのメトキシ基

合成上、メトキシ基はフェノール性ヒドロキシ基の保護基として使用される場合がありますが、一般的に脱保護反応の官能基許容性が低いため、医薬品の合成後期のような高度に官能基化された場合での脱保護は推奨されません。参考記事もご覧ください。
参考記事: O-脱メチル化・脱アルキル化剤 基礎編

おまけ: NMRで見やすいパラ置換アニソール

適当に分子をデザインして ChemDraw で1H-NMRスペクトルの予測を出してみました (図3)。パラ置換アニソールは 3.8 ppm 付近のシングレット (3H) と芳香環領域の特徴的な 2 本のダブレット (2H x2、分解能が高ければダブルダブレットで見えます) が特徴的で帰属しやすいです。なので適当なモデル分子を構築する場合、筆者はパラ置換アニソールを入れたり、単純にメトキシ基を入れたりすることが多いです。

図3 パラ置換アニソール部位の特徴的な NMR ピーク

参考図書

[amazonjs asin=”480520866X” locale=”JP” title=”定量的構造活性相関: Hansch法の基礎と応用”] [amazonjs asin=”4807908499″ locale=”JP” title=”ドラッグデザイン: 構造とリガンドに基づくアプローチ”] [amazonjs asin=”1118057481″ locale=”JP” title=”Greene’s Protective Groups in Organic Synthesis”]
Avatar photo

DAICHAN

投稿者の記事一覧

創薬化学者と薬局薬剤師の二足の草鞋を履きこなす、四年制薬学科の生き残り。
薬を「創る」と「使う」の双方からサイエンスに向き合っています。
しかし趣味は魏志倭人伝の解釈と北方民族の古代史という、あからさまな文系人間。
どこへ向かうかはfurther research is needed.

関連記事

  1. 化学実験系YouTuber
  2. 二核錯体による窒素固定~世界初の触媒作用実現~
  3. 結晶構造データは論文か?CSD Communicationsの公…
  4. 第48回ケムステVシンポ「ペプチド創薬のフロントランナーズ」を開…
  5. 液晶の薬物キャリアとしての応用~体温付近で相転移する液晶高分子ミ…
  6. ヘテロ環ビルディングブロックキャンペーン
  7. 新奇蛍光分子トリアザペンタレンの極小蛍光標識基への展開
  8. 有機強相関電子材料の可逆的な絶縁体-金属転移の誘起に成功

注目情報

ピックアップ記事

  1. 【2021年卒業予定 修士1年生対象】企業での研究開発を知る講座
  2. ホウ素と窒素固定のおはなし
  3. 研究内容を「ダンス」で表現するコンテスト Dance Your Ph.D.
  4. 非常に小さな反転障壁を示す有機リン化合物の合成
  5. 安定なケトンのケイ素類縁体“シラノン”の合成 ケイ素—酸素2重結合の構造と性質
  6. 2006年度ノーベル化学賞-スタンフォード大コンバーク教授に授与
  7. 結晶構造と色の変化、有機光デバイス開発の強力ツール
  8. マーティン・チャルフィー Martin Chalfie
  9. 理想のフェノール合成を目指して~ベンゼンからフェノールへの直接変換
  10. ロジウム(I)触媒を用いるアリールニトリルの炭素‐シアノ基選択的な切断とホウ素化反応

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年6月
 12345
6789101112
13141516171819
20212223242526
27282930  

注目情報

最新記事

有機合成化学協会誌2024年12月号:パラジウム-ヒドロキシ基含有ホスフィン触媒・元素多様化・縮環型天然物・求電子的シアノ化・オリゴペプチド合成

有機合成化学協会が発行する有機合成化学協会誌、2024年12月号がオンライン公開されています。…

「MI×データ科学」コース ~データ科学・AI・量子技術を利用した材料研究の新潮流~

 開講期間 2025年1月8日(水)、9日(木)、15日(水)、16日(木) 計4日間申込みはこ…

余裕でドラフトに収まるビュッヒ史上最小 ロータリーエバポレーターR-80シリーズ

高性能のロータリーエバポレーターで、効率良く研究を進めたい。けれど設置スペースに限りがあり購入を諦め…

有機ホウ素化合物の「安定性」と「反応性」を両立した新しい鈴木–宮浦クロスカップリング反応の開発

第 635 回のスポットライトリサーチは、広島大学大学院・先進理工系科学研究科 博士…

植物繊維を叩いてアンモニアをつくろう ~メカノケミカル窒素固定新合成法~

Tshozoです。今回また興味深い、農業や資源問題の解決の突破口になり得る窒素固定方法がNatu…

自己実現を模索した50代のキャリア選択。「やりたいこと」が年収を上回った瞬間

50歳前後は、会社員にとってキャリアの大きな節目となります。定年までの道筋を見据えて、現職に留まるべ…

イグノーベル賞2024振り返り

ノーベル賞も発表されており、イグノーベル賞の紹介は今更かもしれませんが紹介記事を作成しました。 …

亜鉛–ヒドリド種を持つ金属–有機構造体による高温での二酸化炭素回収

亜鉛–ヒドリド部位を持つ金属–有機構造体 (metal–organic frameworks; MO…

求人は増えているのになぜ?「転職先が決まらない人」に共通する行動パターンとは?

転職市場が活発に動いている中でも、なかなか転職先が決まらない人がいるのはなぜでしょう…

三脚型トリプチセン超分子足場を用いて一重項分裂を促進する配置へとペンタセンクロモフォアを集合化させることに成功

第634回のスポットライトリサーチは、 東京科学大学 物質理工学院(福島研究室)博士課程後期3年の福…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP