[スポンサーリンク]

スポットライトリサーチ

カルシウムイオンを結合するロドプシンの発見 ~海の細菌がカルシウムを感じる機構とセンサー応用への期待~

[スポンサーリンク]

第372回のスポットライトリサーチは、国立大学法人名古屋工業大学 大学院工学研究科 博士後期課程1年(神取研究室 在籍)の杉本 哲平 さんにお願いしました。

ロドプシンは我々の視覚や微生物の運動機能などを司る光センサーとして知られるタンパク質で、内部に可視光を吸収するレチナールと呼ばれる分子を結合しています。ロドプシンはレチナールを利用して生体内で光情報の変換・伝達を担っていますが、レチナールは正電荷を持つため、カルシウムイオンなどの陽イオンはロドプシンの内部には結合しないものとこれまで信じられてきました。

杉本さん達は今回、海洋性細菌が持つTATロドプシンがカルシウムイオンを結合することを見出し、The Journal of Physical Chemistry B誌原著論文および名古屋工業大学プレスリリースで発表しました。生体内でのロドプシンの役割や作用機序の理解の推進のみならず、光遺伝学のツールとしての応用化など幅広い可能性が拓かれている研究成果です。

”Calcium Binding to TAT Rhodopsin”

Teppei Sugimoto, Kota Katayama, Hideki Kandori*

J. Phys. Chem. B, 2022, 126, 11, 2203–2207

DOI: 10.1021/acs.jpcb.2c00233

杉本さんを指導されている神取 秀樹 教授より、杉本さんについて以下のコメントをいただいています。

私はよく「先生が結果を予想できるような研究なんてたいした研究ではない。先生が思いもしないようなデータを出してみなさい」と学生さんに言います。”Surprise me” という私の希望に対し、現実には「超遠心機を壊した」などと驚かされる場合が多いのですが、杉本君のカルシウム結合には驚きました。光駆動プロトンポンプの発見が1971年、クロライドポンプの発見が1977年ですが、それ以降、光を吸収するレチナール近傍への陽イオンの結合は不可能というのが分野の常識でした。我々が2013年に発見した光駆動ナトリウムポンプも、ナトリウムイオンの結合は光反応サイクル中の過渡的なものです。カルシウム結合という驚きの発見は、彼の注意深い観察に加えて、助教の片山君と意見を交換しながら行った粘り強い実験の賜物です。結合するのがカルシウムイオンというのも、生命活動における重要性を考えると意義深いですし、次に彼がどうやって私を驚かせてくれるか、楽しみにしています。

それでは、杉本さんのインタビューをお楽しみください!

 

Q1. 今回プレスリリースとなったのはどんな研究ですか?

我々は、微生物ロドプシンとして初めてタンパク質内部へカルシウムイオンを結合できるロドプシンを発見しました。ロドプシンは、ヒトの視覚や微生物のエネルギー生産など、様々な機能をもたらす光センサータンパク質です。光を吸収するために発色団としてビタミンAの一種であるレチナールを保有しています。レチナールはシッフ塩基を介してタンパク質に結合しますが、シッフ塩基が正電荷を持つことで可視光を吸収し、機能を発揮します。実際にレチナールが正電荷を失い中性になると、吸収帯が紫外光領域に移ります。そのため、シッフ塩基周辺への陽イオンの結合は、正電荷同士の静電反発により、不可能とされてきました。今回の研究対象である、海洋性細菌が持つTATロドプシンは、2019年にイスラエルとの共同研究によって発見した新規微生物ロドプシンです。これまでの研究で、pHに依存してシッフ塩基の荷電状態が変化し、可視光吸収型と紫外光吸収型の二つの状態の割合が変化することが分かりました。これはTATロドプシンが環境pHセンサーとして働くことを示唆しました。

今回、我々はTATロドプシンがカルシウムイオンを結合させ、この結合によって可視光吸収型と紫外光吸収型の比率が変化することを明らかにしました。さらに、遺伝子工学技術によるアミノ酸の変異実験によってカルシウムイオンの結合部位を特定し、また赤外分光法によって結合に伴うタンパク質の構造変化を捉えることにも成功しました。今回の研究から、TATロドプシンは海洋環境中のカルシウム濃度とpHの両方を感知していることが考えられました。さらに、TATロドプシンを使って、光でヒトの体内のカルシウム濃度を検知するようなツール開発にも研究を発展できることが期待されます。

Fig. 1 ロドプシンのカルシウム結合と吸収波長の変化

 

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

本研究を通して、私にとって一番の思い入れはやはり、TATロドプシンがカルシウムイオン結合能を有していることを発見した瞬間です。ロドプシンを含め光センサータンパク質は外界の光を吸収することで着色します (多くのロドプシンは500 nm付近の緑色光を吸収する結果、赤橙色を示します)。私はTATロドプシンを作製していく過程で、塩濃度の違いでTATロドプシンが異なる色を示すことに気付きました。この現象は、レチナール近辺へのイオン結合に起因することが他のロドプシン研究から知られていました。この現象を発見した当時、ちょうどコロナ禍に突入したこともあり、大学での研究活動が制限され始めた時期でもありました。しかし、何のイオンが結合するのか?TATロドプシンの物性への影響は何か?など、探求心への強い気持ちから、神取先生、片山先生に許可をもらい、早速TATロドプシンに対し、様々なイオン存在下での紫外可視吸収スペクトル測定を行い、カルシウムイオン結合の発見につながりました。カルシウムイオンを添加していきTATロドプシンの吸収波長がシフトしていく様子をコロナ禍の影響で閑散として実験室内で観察した時の興奮はその後の自身の研究活動の大きな糧になりました。

 

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

カルシウムイオンが結合することは分かりましたが、タンパク質内部のどこに結合し、どのような結合様式および構造変化を引き起こすのか、 という課題が次々に生まれました。これまでに知られている陽イオン結合能を有する微生物ロドプシンはすべてナトリウムイオンなどの一価イオンであり、二価イオンを結合させるロドプシンはTATロドプシンが初めてであったことに加え、原子構造が分かっていないため、結合部位の探索は困難を極めました。幸い結合部位の候補となり得る酸性アミノ酸の変異体を作製し、カルシウムイオン存在下での吸収スペクトル測定による波長シフトから検証できるわけですが、実際は酸性アミノ酸の単変異では不十分であり、レチナール近辺の2つの酸性アミノ酸の二重変異によって、結合部位を特定することができました。結合機構や構造変化については、我々の研究室が世界をリードする、分子振動の変化をスペクトル変化として捉える赤外分光法を活用することで、カルシウムイオン結合に伴うTATロドプシンの構造変化を抽出し、変異体の結果と合わせて、結合機構を提唱することができました。そして、何よりこれらの変異体の予測・提案は、日々の研究室セミナーや先生および先輩方との濃厚なディスカッションによって生まれた賜物であり、今後も継続して研究室内や学会参加による外部の研究者とのディスカッションを大切したいと改めて感じることができました。

 

Q4. 将来は化学とどう関わっていきたいですか?

私は今年4月から博士後期課程に進学し、TATロドプシンがカルシウムイオンを結合することで光反応にどのような影響を与えるのか、その詳細なメカニズムを明らかにしたいと考えています。また、私が行っている研究は基礎研究ですが、カルシウムイオンは生体内の情報伝達に大きな役割を担っているため、これまで研究してきたカルシウムイオンの結合様式と、これから研究していく光反応メカニズムを応用して、光で生体内のカルシウムイオンを制御できるツールの創成にも携わっていきたいと考えています。

 

Q5. 最後に、読者の皆さんにメッセージをお願いします。

本研究は偶然発見したものであり、自分の知識が足りていない中で多くの人々に支えられながら達成することができたと思います。また、今回の研究を通して、他人に自分の成果を認められる喜びを知ることができたと思います。今後は、現状に満足せず、さらに自分の研究を発展させていきたいです。

最後になりましたが、今回このような貴重な機会を与えてくださったChem-Stationスタッフの方々に感謝申し上げます。そして、本研究をまとめるにあたり、ご指導とご助言をいただいた神取秀樹教授、片山耕大助教をはじめ、研究室の皆様に深く感謝申し上げます。

 

【研究者の略歴】

名前:杉本 哲平 (すぎもと てっぺい)

所属:名古屋工業大学 大学院工学研究科 博士後期課程1年 工学専攻 生命応用化学系プログラム 神取研究室

研究テーマ:TATロドプシンの光反応機構解明

 

 

 

関連リンク

名古屋工業大学 神取研究室 Website

名古屋工業大学プレスリリース:カルシウムイオンを結合するロドプシンの発見 ~海の細菌がカルシウムを感じる機構とセンサー応用への期待~

Avatar photo

Shirataki

投稿者の記事一覧

目には見えない生き物の仕組みに惹かれ、生体分子の魅力を探っていこうとしています。ポスドクや科学館スタッフ、大学発ベンチャー研究員などを経て放浪中。

関連記事

  1. 求電子剤側で不斉を制御したアミノメチル化反応
  2. 生体分子を活用した新しい人工光合成材料の開発
  3. 若手研究者に朗報!? Reaxys Prizeに応募しよう
  4. カルボン酸、窒素をトスしてアミノ酸へ
  5. 経験と資格を生かしたいが実務経験なし。 そんな30代女性の再就職…
  6. 接着系材料におけるmiHub活用事例とCSサポートのご紹介
  7. 第93回日本化学会付設展示会ケムステキャンペーン!Part I
  8. 2次元分子の芳香族性を壊して、ホウ素やケイ素を含む3次元分子を作…

注目情報

ピックアップ記事

  1. ノリッシュ・ヤン反応 Norrish-Yang Reaction
  2. howeverの使い方
  3. 塩化インジウム(III):Indium(III) Chloride
  4. ピエトロ・ビギネリ Pietro Biginelli
  5. 計算化学者は見下されているのか? Part 1
  6. おまえら英語よりもタイピングやろうぜ ~初級編~
  7. 大学院生のつぶやき:第5回HOPEミーティングに参加してきました
  8. 世界5大化学会がChemRxivのサポーターに
  9. 触媒の貴金属低減化、劣化対策の技術動向【終了】
  10. 化学は切手と縁が深い

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年4月
 123
45678910
11121314151617
18192021222324
252627282930  

注目情報

最新記事

有機合成化学協会誌2024年12月号:パラジウム-ヒドロキシ基含有ホスフィン触媒・元素多様化・縮環型天然物・求電子的シアノ化・オリゴペプチド合成

有機合成化学協会が発行する有機合成化学協会誌、2024年12月号がオンライン公開されています。…

「MI×データ科学」コース ~データ科学・AI・量子技術を利用した材料研究の新潮流~

 開講期間 2025年1月8日(水)、9日(木)、15日(水)、16日(木) 計4日間申込みはこ…

余裕でドラフトに収まるビュッヒ史上最小 ロータリーエバポレーターR-80シリーズ

高性能のロータリーエバポレーターで、効率良く研究を進めたい。けれど設置スペースに限りがあり購入を諦め…

有機ホウ素化合物の「安定性」と「反応性」を両立した新しい鈴木–宮浦クロスカップリング反応の開発

第 635 回のスポットライトリサーチは、広島大学大学院・先進理工系科学研究科 博士…

植物繊維を叩いてアンモニアをつくろう ~メカノケミカル窒素固定新合成法~

Tshozoです。今回また興味深い、農業や資源問題の解決の突破口になり得る窒素固定方法がNatu…

自己実現を模索した50代のキャリア選択。「やりたいこと」が年収を上回った瞬間

50歳前後は、会社員にとってキャリアの大きな節目となります。定年までの道筋を見据えて、現職に留まるべ…

イグノーベル賞2024振り返り

ノーベル賞も発表されており、イグノーベル賞の紹介は今更かもしれませんが紹介記事を作成しました。 …

亜鉛–ヒドリド種を持つ金属–有機構造体による高温での二酸化炭素回収

亜鉛–ヒドリド部位を持つ金属–有機構造体 (metal–organic frameworks; MO…

求人は増えているのになぜ?「転職先が決まらない人」に共通する行動パターンとは?

転職市場が活発に動いている中でも、なかなか転職先が決まらない人がいるのはなぜでしょう…

三脚型トリプチセン超分子足場を用いて一重項分裂を促進する配置へとペンタセンクロモフォアを集合化させることに成功

第634回のスポットライトリサーチは、 東京科学大学 物質理工学院(福島研究室)博士課程後期3年の福…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP