[スポンサーリンク]

スポットライトリサーチ

かさ高い非天然α-アミノ酸の新規合成方法の開発とペプチドへの導入~中分子ペプチド医薬品開発に向けて~

[スポンサーリンク]

第376回のスポットライトリサーチは、九州大学大学院薬学府(大嶋研究室)博士課程 2年の辻 汰朗 さんにお願いしました。

「中分子ペプチド」と呼ばれる数個から十数個のアミノ酸がつながったペプチドが創薬の分野で注目されています。天然α-アミノ酸だけでなく、かさ高い非天然α-アミノ酸をペプチドに組み込むことができれば、天然だけでは得られないような機能を持ったペプチドが創出できると考えられていますが、かさ高い非天然α-アミノ酸の合成は極めて難しいとされていました。

今回ご紹介するのは、かさ高い非天然α-アミノ酸の新規合成方法の開発と非天然α-アミノ酸をペプチドに組み込んだという成果です。中分子ペプチド医薬品開発などの基盤技術として今後の活用にも期待される本成果は、Nature Synthesis 誌 原著論文およびプレスリリースに公開されています。

α-Amino acid and peptide synthesis using catalytic cross-dehydrogenative coupling
Tsuji, T.; Hashiguchi, K.; Yoshida, M.; Ikeda, T.; Koga, Y.; Honda, Y.; Tanaka, T.; Re, S.; Mizuguchi, K.; Takahashi, D.; Yazaki, R.; Ohshima, T. Nature Synthesis, 2022, 1 , 304–312. doi:10.1038/s44160-022-00037-0

研究を指導された大嶋孝志 教授矢崎亮 助教から、辻さんについて以下のコメントを頂いています。

大嶋先生

インタビューの方でもコメントしていますが、辻くん(D2)は飄々とした雰囲気を醸し出していますが、実はすごい頑張り屋さんです。研究に対する知識と遂行能力だけではなく、それを実際に推し進めるだけの精神面と体力面の強さを持っている学生です。もともと学部時代の成績も良く、薬学部の奨学特別選抜にも選ばれている成績優秀者ですが、研究室に配属後は、地道な努力がその才能を開花させたような感じで、研究者としての成長は目を見張るものがあります。また、教育面での才能もあり、安心して後輩の指導を任せられる存在になっています。実際、後輩からの信頼も厚く、わかりやすく丁寧に教えてくれると評判です。そのようなコミュニケーション力の高さや、独特のユーモアセンスは、落語サークルで培ったものではないかと推察しています(いつか落語を披露してくれるのを楽しみにしています)。今回の研究でも、これらの才能が存分に生かされ、研究グループ全体の核として研究を引っ張ってくれました。今度は、さらに才能を伸ばして、日本の化学の将来を担う人材として成長していってもらいたいと思っています。

矢崎先生

辻くんは知的好奇心が高く、研究室に配属されてからもとても成長しています。研究のすすめ方もとても丁寧かつ理論的で、今回の論文の反応機構解析もすんなりとこなしています。そんな辻くんだからこそ、今回の論文をうまくまとめ上げることができたのではないかと思います。また人当たりもとても良くて、後輩からの良き手本となって、研究グループを引率してくれています。今回の論文を通してさらに成長した辻くんの、独自のおもしろい研究展開を益々楽しみにしています。

今回はスポットライトリサーチムービーも撮影していただきました。スポットライトリサーチムービーもインタビューもお楽しみください!

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

今回の研究は今まで合成するのが非常に難しかった立体的に大きなα-アミノ酸を作るというものです。α-アミノ酸は私たちの体をつくるたんぱく質の構成成分として、生命活動を維持するための重要な役割を担っています。また最近では、創薬分野において低分子と抗体の特徴を有した中分子ペプチド、中でも天然には存在しない非天然α-アミノ酸を有する中分子ペプチドが革新的な次世代型医薬品として期待されています。

そのため非天然α-アミノ酸の合成法は古くより盛んに研究が行われてきました。代表的なものにO’Donnell教授らによって40年以上前に開発されたアミノ酸Schiff塩基を用いた反応がありますが、この反応は本質的に立体障害に弱いイオン型の反応機構であるために立体的に大きな非天然α-アミノ酸、特に連続して立体的に大きな部位をもつ非天然α-アミノ酸の合成はこれまで非常に困難でした。

当研究室では、近年、銅触媒を用いて非常に立体が混みいった非天然α-アミノ酸の合成法を開発しました。本反応では、様々なα-アミノ酸が合成可能でしたが、カップリングパートナーが反応性の高い入手困難な三級の臭化アルキルに限定されていました。そこで今回、入手容易なCsp3-Hをもつ炭化水素をカップリングパートナーとし、より多種多様な非天然α-アミノ酸の合成に成功しました。

さらに、合成された非天然α-アミノ酸は固相合成によりペプチドに組み込むことにも成功しました。この新規ペプチドは、天然α-アミノ酸由来のペプチドと比較して、顕著な立体構造の変化(α-ヘリックス構造の安定化)が観測され、今後立体的に大きな非天然α-アミノ酸の機能評価や、中分子ペプチド医薬品などの様々な機能性分子創製への応用が期待されます。

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

メカニズム解析のところです。はじめは、アミノ酸Schiff塩基のホモカップリング化はほぼ進行していないと思っていましたが、実は進行していました。小さい事象ですが、先入観を持ちすぎていたなと反省しました。また、KIE実験などのデータより適切なメカニズムを考えるのが楽しかったです。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

地味に脱保護が難しかったです。アミン側は問題なく脱保護できましたが、カルボン酸側が意外となかなかできませんでした。最終的には保護基を変えてなんとか脱保護できたのですが、立体障害の大きなアミノ酸となると、反応性が著しく変わるなと実感しました。

また、脱保護後の縮合反応も難しかったです。こちらもアミン側は問題なく縮合できるのですが、カルボン酸側がきつかったです。こちらに関しては、あまり解決できておらず、低収率ながら無理やりペプチド化して構造解析したという感じになっており、心残りとなっている点です。現在この課題に関しては、同じ研究室の仲間が解決に向けた検討を行っているので、彼の活躍に期待しています。

Q4. 将来は化学とどう関わっていきたいですか?

良い意味で「広く浅く」化学と関わっていきたいと思っています。自分は現在、有機化学の反応開発という分野で「狭く深く」関わっています(*「深く」と言っていますが、他の人から見たらスプーン程度の深さかもしれません)。最近、計算科学や機械学習などの技術に触れたり、企業研究者の方たちの話を伺っている中で、それぞれ同じものを見ていても、価値観が異なっていることに驚きと面白さを感じております。よって様々な化学の側面を味わい、何が可能で何を求められているのかを見極め、最終的には「広く深く」を目指しながら、化学という世界に自分の技術を還元できればなと願っております。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

主な読者は化学系の大学生ということなので、その方たちに伝えることメッセージとしては、自分のメンタルケアを大切にしてください。研究はうまくいかないことがやはり多いです。もちろん、その中で見つける一つのポジティブデータは、砂漠のオアシスのごとく歓喜の極みですが、全員がそうではないと思います。ぜひ、一人で抱え込まずに、友人や周りの人に吐き出したり、時には趣味に没頭したりし、健康で文化的な最低限度の生活を送ってください。自分も頑張ります。

最後になりましたが、熱心なご指導に加え、自由な研究環境を与えてくださった大嶋先生、森本先生、矢崎先生をはじめとする研究室の皆様に感謝申し上げます。並びに、本論文の作成にあたり多大な貢献をしてくださった九州大学の高橋大輔先生、医薬基盤・健康・栄養研究所の李秀栄先生、水口賢司先生にこの場を借りて深く感謝申し上げます。また、このような貴重な機会をくださったChem-Stationスタッフの方々にも深く感謝いたします。

研究者の略歴

 

名前:辻 汰朗 (つじ たろう)
所属:九州大学薬学府環境調和創薬化学分野
研究テーマ:α-アミノ酸Schiff 塩基と炭化水素の触媒的脱水素型クロスカップリング反応の開発

関連リンク

  1. 嵩高い非天然α,α-二置換アミノ酸をさらに嵩高くしてみた(スポットライトリサーチ)
  2. 無保護カルボン酸のラジカル機構による触媒的酸化反応の開発(スポットライトリサーチ)

hoda

投稿者の記事一覧

大学院生です。ケモインフォマティクス→触媒

関連記事

  1. 未来の科学者を育てる政策~スーパーサイエンスハイスクール(SSH…
  2. 武装抗体―化学者が貢献できるポイントとは?
  3. 化学探偵Mr.キュリー8
  4. 光触媒反応用途の青色LED光源を比較してみた【2020/8/11…
  5. 第98回日本化学会春季年会 付設展示会ケムステキャンペーン Pa…
  6. 分子間エネルギー移動を利用して、希土類錯体の発光をコントロール!…
  7. 私達の時間スケールでみても、ガラスは固体ではなかった − 7年前…
  8. マタタビの有効成分のはなし【更新】

注目情報

ピックアップ記事

  1. シリンドロシクロファン生合成経路の解明
  2. 研究のための取引用語
  3. 2023年ノーベル化学賞ケムステ予想当選者発表!
  4. Dead Endを回避せよ!「全合成・極限からの一手」①(解答編)
  5. ポール・ロゼムンド Paul W. K. Rothemund
  6. 植物毒素の全合成と細胞死におけるオルガネラの現象発見
  7. イライアス・コーリー E. J. Corey
  8. 女性化学賞と私の歩み【世界化学年 女性化学賞受賞 特別イベント】
  9. 酢酸ビニル (vinyl acetate)
  10. 日本ゼオンのイノベーションに関する活動

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年4月
 123
45678910
11121314151617
18192021222324
252627282930  

注目情報

最新記事

ディストニックラジカルによる多様なアンモニウム塩の合成法

第643回のスポットライトリサーチは、関西学院大学理工学研究科 村上研究室の木之下 拓海(きのした …

MEDCHEM NEWS 34-1 号「創薬を支える計測・検出技術の最前線」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

医薬品設計における三次元性指標(Fsp³)の再評価

近年、医薬品開発において候補分子の三次元構造が注目されてきました。特に、2009年に発表された論文「…

AI分子生成の導入と基本手法の紹介

本記事では、AIや情報技術を用いた分子生成技術の有機分子設計における有用性や代表的手法について解説し…

第53回ケムステVシンポ「化学×イノベーション -女性研究者が拓く未来-」を開催します!

第53回ケムステVシンポの会告です!今回のVシンポは、若手女性研究者のコミュニティと起業支援…

Nature誌が発表!!2025年注目の7つの技術!!

こんにちは,熊葛です.毎年この時期にはNature誌で,その年注目の7つの技術について取り上げられま…

塩野義製薬:COVID-19治療薬”Ensitrelvir”の超特急製造開発秘話

新型コロナウイルス感染症は2023年5月に5類移行となり、昨年はこれまでの生活が…

コバルト触媒による多様な低分子骨格の構築を実現 –医薬品合成などへの応用に期待–

第 642回のスポットライトリサーチは、武蔵野大学薬学部薬化学研究室・講師の 重…

ヘム鉄を配位するシステイン残基を持たないシトクロムP450!?中には21番目のアミノ酸として知られるセレノシステインへと変異されているP450も発見!

こんにちは,熊葛です.今回は,一般的なP450で保存されているヘム鉄を配位するシステイン残基に,異な…

有機化学とタンパク質工学の知恵を駆使して、カリウムイオンが細胞内で赤く煌めくようにする

第 641 回のスポットライトリサーチは、東京大学大学院理学系研究科化学専攻 生…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー