[スポンサーリンク]

スポットライトリサーチ

貴金属触媒の活性・硫黄耐性の大幅向上に成功

[スポンサーリンク]

第363回のスポットライトリサーチは、大阪大学大学院 基礎工学研究科(水垣研究室)・石川 浩也 さんにお願いしました。

石油などの化学製品の原料には硫黄化合物が不純物として含まれていますが、従来の金属触媒では硫黄化合物が金属に吸着して、触媒活性が低下するという問題がありました。今回ご紹介する研究は、そのような挑戦的課題に挑んだものです。本成果はJACS Au誌 原著論文・プレスリリースに公開されており、JACS Au誌の表紙にも選ばれ、さらに日刊工業新聞でも取り上げられています。

Phosphorus-Alloying as a Powerful Method for Designing Highly Active and Durable Metal Nanoparticle Catalysts for the Deoxygenation of Sulfoxides: Ligand and Ensemble Effects of Phosphorus.

Hiroya Ishikawa, Sho Yamaguchi, Ayako Nakata, Kiyotaka Nakajima, Seiji Yamazoe, Jun Yamasaki, Tomoo Mizugaki, and Takato Mitsudome*, JACS Au2022, 2, 419–427.  doi:10.1021/jacsau.1c00461

研究を指導された満留 敬人教授から、石川さんについて以下のコメントと素敵な似顔絵を頂いています。

植物は毎日声をかけて愛でてあげるとよく育つものもあるらしいです。一方で、水もろくに与えられない状況で、力強く育つものもあります。どうやら人間にもそれが当てはまる場合があるようです。不幸ながら私のもとについてしまい、後者の状況に置かれた石川くんは、厳寒の北海道で育った賜物か、厳しい環境下で彼の生命力が目を覚まし、たくましくなっていきました。優秀だとか良い研究かどうかの前に、学費を出している親や自身の置かれている境遇に感謝し、研究を通して、いささかの厳しさを体感し、思い通りにいかない人生の片鱗を見ればよし!

頑張れ、石川!彼は猫と触媒のダブルキャットが好きな人➡似顔絵。

それでは今回もインタビューをお楽しみください!

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

触媒活性の低下の原因となる硫黄化合物に対して高い耐性を持つ合金ナノ粒子触媒を開発しました。

石油などの化学原料に含まれている硫黄成分、または、硫黄原子を含む有機化合物は触媒中の金属に強く吸着し、金属表面上で進行する触媒反応を著しく阻害することが知られています。そのため、従来の金属触媒は硫黄成分が存在する反応を効率よく促進させることができないという問題があり、高い硫黄耐性をもつ触媒の開発が望まれていました。

今回、私たちの研究グループはルテニウムとリンとを2:1の割合で合金化した直径3ナノメートルのリン化ルテニウムナノ粒子(Ru–P/SiO2)が、硫黄化合物の変換反応の一つであるスルホキシドの脱酸素反応において非常に高い活性・耐久性を示すことを見出しました。Ru–P/SiO2は、リン化していないルテニウムナノ粒子(Ru/SiO2)に比べ、およそ10倍高い活性を示しました(図1)。また、触媒回転数(使用した金属のmol数あたり生成したスルフィドのmol数)は、12500に達し,世界最高活性をもつことを明らかにしています。

触媒の硫黄耐性を評価するためにRuに対して200当量の硫黄化合物(スルフィド)を添加して反応を行ったところ、Ru/SiO2では反応が全く進行しないのに対し、Ru–P/SiO2では高収率で目的生成物を得ることができました(図2a)。このように、従来の金属触媒とは異なり、Ru–P/SiO2は多量の硫黄化合物が存在する環境においても反応を促進させることができます。

本研究では貴金属とリンとを合金化すると、貴金属は硫黄化合物に対して高い耐性を示すことを明らかにしました。開発した触媒は、硫黄原子を含んだ生理活性物質の合成に適用できます(図2b)。現在、これらのスルホキシドの脱酸素反応には亜鉛などの金属やハロゲン化物といった有毒な試剤が用いられています。一方、今回開発した触媒系は無毒な水素ガスを還元剤として用い、副生物は水のみであるため、より環境にやさしい反応系であると言えます。

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

はじめてリン化ルテニウム触媒で反応を試したとき、これまでは僅かにしか進まなかった反応がものすごい勢いで進行しました。生成物に由来するピークが大きく立ち上がっているガスクロチャートを見たときの興奮は、今でも忘れることができません。ある日突然反応が進行するようになる、触媒研究の醍醐味を味わうことができた瞬間でした。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

リン化によって活性および硫黄耐性が向上する原因の解明が難しかったです。所属研究室および共著者の先生方のご協力のもと、様々な分光学的手法や理論計算を用いて触媒の構造-活性相関の解明に取り組みました。測定機器の取り扱いに不慣れだったこともあり、必要なデータを集めるのに長い時間がかかりました。長期に及ぶ検討の結果、リン化によってルテニウムからリンへの電子移動がおこり、反応が効率的に進行するサイトが形成されること、硫黄原子が吸着しやすいサイトがルテニウムの8分の1に減少することを明らかにしました。これらのリン化による効果が触媒の活性、硫黄耐性の向上に寄与しています。

Q4. 将来は化学とどう関わっていきたいですか?

研究を始めたばかりのころは目の前のことをやるのに精一杯で研究を楽しむどころではなく、正直に言うと研究はしんどいものだと思っていました。しかし、それでも研究を続けていくと徐々に楽しいという感情が芽生え、それは次第に大きくなっていきました。もっと研究を続ければ、さらに楽しくなるかもしれないという期待から博士後期課程に進学しました。今後さらに研究が楽しくなっていくと考えると、ワクワクが止まりません。これからも長く研究の楽しさを味わうため、将来は一研究者として化学に携わり続けたいと考えています。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

上述しましたが、私が研究を楽しめるようになったのは研究を始めてからかなり後のことでした。Chem-Stationをご覧になっている方には、研究を始めたばかりでなかなかうまくいかずに思い悩んでいる人、これからの研究生活に不安を抱いている人もいると思いますが、うまくできないなりに真剣に研究を続けていれば、いつか必ず研究を楽しめるようになるときが来ます。いつか来るそのときを信じて、思い切り研究に打ち込んでください。

最後に、いつもご指導いただいている水垣共雄先生、満留敬人先生、山口渉先生、大変お世話になりました共著者の先生方、いつも共に研究に励んでいる水垣研究室のメンバーの皆様に心より感謝申し上げます。また、このような機会を与えてくださったChem-Stationスタッフの皆様に深く御礼申し上げます。

研究者の略歴

名前:石川 浩也いしかわ ひろや
所属:大阪大学大学院基礎工学研究科物質創成専攻 水垣研究室 博士後期課程一年
研究テーマ:金属リン化物の触媒機能に関する研究
略歴:
2017年 旭川工業高等専門学校 物質化学工学科 卒業
2019年 大阪大学基礎工学部化学応用科学科 卒業
2021年 大阪大学大学院基礎工学研究科物質創成専攻 博士前期課程 修了
2021年-現在 大阪大学大学院基礎工学研究科物質創成専攻 博士後期課程 在学

関連リンク

  1. 安全性・耐久性・高活性を兼ね備えた次世代型スマート触媒の開発(スポットライトリサーチ)

hoda

投稿者の記事一覧

大学院生です。ケモインフォマティクス→触媒

関連記事

  1. 2010年イグノーベル賞決定!
  2. 世界初のジアゾフリーキラル銀カルベン発生法の開発と活性化されてい…
  3. ホットキーでクールにChemDrawを使いこなそう!
  4. 半導体領域におけるマテリアルズ・インフォマティクスの活用-レジス…
  5. 有機合成化学協会誌2020年11月号:英文版特集号
  6. 【マイクロ波化学(株) 石油化学/プラスチック業界向けウェビナー…
  7. MIDAボロネートを活用した(-)-ペリジニンの全合成
  8. 学部4年間の教育を振り返る

注目情報

ピックアップ記事

  1. 不安定さが取り柄!1,2,3-シクロヘキサトリエンの多彩な反応
  2. 第4回CSJ化学フェスタに参加してきました!
  3. ラボでのスケールアップ検討と晶析・攪拌でのトラブル対応策【終了】
  4. 第13回ケムステVシンポジウム「創薬化学最前線」を開催します!
  5. iPhone/iPodTouchで使える化学アプリケーション 【Part 2】
  6. 今年の名古屋メダルセミナーはアツイぞ!
  7. 生きたカタツムリで発電
  8. 日本企業クモ糸の量産技術確立:強さと柔らかさあわせもつ究極の素材
  9. トコジラミの話 最新の状況まとめ(2023年版)
  10. ChemDrawの使い方【作図編①:反応スキーム】

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年2月
 123456
78910111213
14151617181920
21222324252627
28  

注目情報

最新記事

MEDCHEM NEWS 34-1 号「創薬を支える計測・検出技術の最前線」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

医薬品設計における三次元性指標(Fsp³)の再評価

近年、医薬品開発において候補分子の三次元構造が注目されてきました。特に、2009年に発表された論文「…

AI分子生成の導入と基本手法の紹介

本記事では、AIや情報技術を用いた分子生成技術の有機分子設計における有用性や代表的手法について解説し…

第53回ケムステVシンポ「化学×イノベーション -女性研究者が拓く未来-」を開催します!

第53回ケムステVシンポの会告です!今回のVシンポは、若手女性研究者のコミュニティと起業支援…

Nature誌が発表!!2025年注目の7つの技術!!

こんにちは,熊葛です.毎年この時期にはNature誌で,その年注目の7つの技術について取り上げられま…

塩野義製薬:COVID-19治療薬”Ensitrelvir”の超特急製造開発秘話

新型コロナウイルス感染症は2023年5月に5類移行となり、昨年はこれまでの生活が…

コバルト触媒による多様な低分子骨格の構築を実現 –医薬品合成などへの応用に期待–

第 642回のスポットライトリサーチは、武蔵野大学薬学部薬化学研究室・講師の 重…

ヘム鉄を配位するシステイン残基を持たないシトクロムP450!?中には21番目のアミノ酸として知られるセレノシステインへと変異されているP450も発見!

こんにちは,熊葛です.今回は,一般的なP450で保存されているヘム鉄を配位するシステイン残基に,異な…

有機化学とタンパク質工学の知恵を駆使して、カリウムイオンが細胞内で赤く煌めくようにする

第 641 回のスポットライトリサーチは、東京大学大学院理学系研究科化学専攻 生…

CO2 の排出はどのように削減できるか?【その1: CO2 の排出源について】

大気中の二酸化炭素を減らす取り組みとして、二酸化炭素回収·貯留 (CCS; Carbon dioxi…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー