[スポンサーリンク]

スポットライトリサーチ

青色LEDで駆動する銅触媒クロスカップリング反応

[スポンサーリンク]

 

第364回のスポットライトリサーチは、北海道大学大学院総合化学院 有機金属化学研究室 博士後期課程2年の 上田 悠介 (うえだ・ゆうすけ) さんにお願いしました。

上田さんの所属する澤村研究室では「美しく、多彩で優れた機能を持ち、画期的な新反応を実現するすばらしい有機合成触媒を生み出したい」という夢を掲げ革新的な研究を行っています。上田さんは今回、安価な青色 LED 光を組み合わせることで進行する非常にユニークなクロスカップリング反応を開発し、その研究成果を JACS誌に発表しました。プレスリリースは↓コチラ↓。

北海道大学創成研究機構化学反応創成研究拠点 (WPI-ICReDD)・同大学院理学研究院の澤村正也 教授らの研究グループは,入手容易な青色 LED の光によって駆動する画期的なクロスカップリング反応を開発し,安価な銅で構成される分子触媒を用いて有用化合物を効率よく合成することに成功しました。

持続可能な社会の実現に向けて,再生可能エネルギーである太陽光の有効利用は人類の最重要課題の一つです。こういった背景のもと,近年,光を利用した化学反応が盛んに研究されています。しかし,従来の方法の多くは,人体に有害な紫外光や光を効率よく吸収するための高価な貴金属の添加剤  (光触媒と呼ばれる) を用いる必要がありました。また,クロスカップリング反応は医薬品や光電子材料といった私たちの身の回りの化成品を合成する上で不可欠な技術ですが,このクロスカップリング反応においても,多くの場合パラジウムなどの貴金属を用いる必要がありました。

研究グループは,銅を中心とする分子触媒を光によって活性化する革新的な手法で上述の課題を一挙に解決しました。銅は地球上に豊富に存在する安価な金属です。銅触媒が入手容易な青色 LED の光を直接吸収することで反応が進行するため,外部の添加剤を必要とせず,コストや地球環境の観点から極めて優れた化学反応です。この技術を活用することで,従来の貴金属に頼った化学反応を刷新し,持続可能な社会の実現に大きく近づくことが期待できます。

なお,本研究成果は,2022 年 1 月 6 日(木)公開の Journal of the American Chemical Society 誌 に掲載されました。

北海道大学プレスリリース, 2022 年 1 月 14 日

本研究は、SDGs が声高に叫ばれる中、クロスカップリング反応のお膝元とも言える北大において次世代のカップリングを達成した記念すべき成果と言えるでしょう。奇しくも「クロスカップリング x 青色LED」というノーベル賞のマリアージュになっているのが面白いですね!

研究を指揮された教授の澤村先生と助教の増田先生より、上田さんの研究への情熱と人となりについてコメントを頂いております!

上田くんは研究室の学生リーダーの一人です。今回の上田くんの研究は、有機金属触媒化学を専門とする研究室が光で有機金属触媒をパワーアップするという新しい手法を導入するきっかけになりました。研究室のさらなるパワーアップをリードして行って欲しいと思います。

澤村正也 先生

 

私が助教として澤村研究室に着任した2021年2月、上田くんはすでに光銅触媒の研究テーマに取り組んでいました。というか、もはや基質適用範囲の探索を終えて、あとはメカニズムの検証だけという状態でした。なかなか中間体であるアシル銅の尻尾がつかめない中、着任したばかりの私の世話(?)もするという苦労の期間が続きました。そのような環境でも、上田くんはあきらめることなく実験を続け、計算化学や分光学の先生方と共同研究も行いながら、小さな知見を集めていきました。そして12月、無事に年内にアクセプトがもらえて本当に喜んだのを覚えています。この論文は上田くんの努力の結晶ですが、研究を通じて私もたくさん勉強させてもらい、とても感謝しています。

上田くんはその研究遂行能力もさることながら、研究室の留学生から小学生の子どもたちまで誰とでも気さくに接することができる類稀な存在です。そんな彼なら、化学に限らずいかなる環境でも今後活躍すること間違いないでしょう!

増田侑亮 先生

それでは、努力の結晶である本研究成果の裏話をお楽しみください!

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください】

今回我々は、アシルシランとリン酸アリルエステルを反応基質とした可視光駆動銅触媒不斉アリル位アシル化反応を開発しました。生成物が得られるまでに2種類の光励起過程が関与するのがポイントです。1つ目はアシルシランの光異性化を起こす励起です[1]。この光異性化により生成するシロキシカルベンと銅触媒の反応により、中性のアシル銅が生成します。2つ目は生成した触媒中間体であるアシル銅(I)錯体の光活性化です。この新規の光励起が鍵となり、極性転換型アリル位アシル化反応が高収率かつ高立体選択的に進行します。

この研究の特に面白い点は、触媒中間体であるアシル銅が光励起し、銅中心から電子受容性の高いアシル基に一電子移動が起こるところです。近年流行りの光を利用した有機合成反応では、そのほとんどが外部からの添加剤として光触媒を必要とします。そしてそれら反応では、励起光触媒と反応基質との一電子移動 (SET) によりフリーラジカルを生成するものが主流です。一方本反応では、結合形成/切断の中心として働く遷移金属触媒が直接光を吸収し、続く分子内電荷移動 (MLCT) により高反応性の触媒活性種を与える点で画期的です。この全く新しい化学現象に基づいた反応設計及び機構解析が高く評価されました。

[1] (a) Brook, A. G.; Duff, J. M. J. Am. Chem. Soc. 1967, 89, 454−455, DOI: 10.1021/ja00978a053 (b) Ito, K.; Tamashima, H.; Iwasawa, N.; Kusama, H. J. Am. Chem. Soc. 2011, 133, 3716−3719, DOI: 10.1021/ja1102597

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。】

触媒中間体として想定していたアシル銅(I)錯体が光励起し分子内電荷移動 (MLCT) が起きているのでは?、と実験結果から着想したことです。研究室ではリン酸アリルエステルを求電子剤とした銅触媒不斉アリル位置換反応において、独自に開発したフェノール性水酸基を有する NHC 配位子が有効であることに注目した研究が行われていました[2]。塩基性条件下で生成するヘテロクプラート活性種の高い求核性がポイントです。しかし今回の反応では不斉配位子に水酸基は不要であり、中性条件でも異常な高反応性を示しました。この実験結果に関して澤村先生と議論したことをきっかけに、アシル銅が光励起し、銅中心から電子不足配位子であるアシル基への MLCT が起こる機構を思い付きました。

[2] (a) Harada, A.; Makida, Y.; Sato, T.; Ohmiya, H.; Sawamura, M. J. Am. Chem. Soc. 2014, 136, 13932−13939, DOI: 10.1021/ja5084333 (b) Ohmiya, H.; Zhang, H.; Shibata, S.; Harada, A.; Sawamura, M. Angew. Chem., Int. Ed. 2016, 55, 4777−4780, DOI: 10.1002/anie.201600619 (c) Yasuda, Y.; Ohmiya, H.; Sawamura, M. Angew. Chem., Int. Ed. 2016, 55, 10816−10820, DOI: 10.1002/anie.201605125 (d) Hojoh, K.; Ohmiya, H.; Sawamura, M. J. Am. Chem. Soc. 2017, 139, 2184−2187, DOI: 10.1021/jacs.6b12881

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?】

最も難しかったのは、アシル銅(I)錯体の光励起作用の解明に取り組んだことです。実験ノートを見返してみると、最初にこの反応を発見したのが約2年前、そしてそこから半年程で条件最適化や基質適用範囲の検討がほぼ終わっていました。つまり1年半ほど光励起作用の解明に取り組んでいたということになります…。

アシル銅の単離ができれば手っ取り早かったのですが、それがどうしてもできなかったのが大きな理由でした。そこで共著者である長谷川先生上野先生のグループに協力頂き、計算化学的手法や、分光学的手法にも取り組みました。これによって、アシル銅の MLCT 光励起が起こっているという、当初の想定の妥当性を確認し、論文化にこぎつけきました。

Q4. 将来は化学とどう関わっていきたいですか?】

卒業後は製薬会社の研究職として働く予定です。異なる場所で新たなチャレンジをしていくことになりますが、これまで培ってきた”物事の本質を的確に見極める”という姿勢を一番大切にしていきたいと思います。どのような形であれ、化学の力で人々の生活に貢献できる研究者になりたいと考えています。

Q5. 最後に、読者の皆さんにメッセージをお願いします

最後まで読んでいただき、ありがとうございました!

今回の研究を通じて、色々な人と協力して物事を進めていくことの重要性を改めて感じました。共著者の皆様の協力はもちろん、研究室のメンバーとの雑談のようなディスカッションや、卒業された先輩達のご指導、築き上げてきた知見がなければ、今回の成果は生まれませんでした。この記事を読んでくださった皆様も、困った時ほど他の人の助けを借りて、楽しみながら研究に取り組んでもらえたらと思います。

最後になりましたが、このような貴重な機会を与えてくださった、Chem-Station スタッフの方々に感謝申し上げます。そして、繰り返しになりますが、本研究に多大なるご協力を頂いた共著者の皆様、研究室のメンバー、先輩方にも深く感謝致します。

【研究者の略歴】

名前:上田 悠介(うえだ ゆうすけ)

所属:北海道大学大学院総合化学院 有機金属化学研究室 博士後期課程 2年 (2021年1月現在)

研究テーマ:光駆動銅触媒不斉アシル化反応の開発

経歴
2018年 北海道大学理学部化学科 卒業
2020年 北海道大学大学院総合化学院 総合化学専攻  修士課程 修了
2020年4月–現在 北海道大学大学院総合化学院 総合化学専攻 博士後期課程
2021年4月–現在 日本学術振興会特別研究員DC2

受賞
The 20th IUPAC International Symposium on Organometallic Chemistry Directed Toward Organic Synthesis (OMCOS 20) Poster Award

 

 

有機触媒に注目が集まる中、金属触媒もさらなる大発展の可能性を残していると再発見させられる研究でした!上田様、澤村先生、増田先生、インタビューにご協力いただきありがとうございました。
それでは、次回のスポットライトリサーチもお楽しみに!

[amazonjs asin=”4807920057″ locale=”JP” title=”有機合成のための新触媒反応101″] [amazonjs asin=”4894536102″ locale=”JP” title=”世界を変えた化学反応 鈴木章とノーベル賞”] [amazonjs asin=”B015CEU328″ locale=”JP” title=”天野先生の「青色LEDの世界」 光る原理から最先端応用技術まで (ブルーバックス)”]
Avatar photo

DAICHAN

投稿者の記事一覧

創薬化学者と薬局薬剤師の二足の草鞋を履きこなす、四年制薬学科の生き残り。
薬を「創る」と「使う」の双方からサイエンスに向き合っています。
しかし趣味は魏志倭人伝の解釈と北方民族の古代史という、あからさまな文系人間。
どこへ向かうかはfurther research is needed.

関連記事

  1. ダイヤモンドは砕けない
  2. アウグスト・ホルストマン  熱力学と化学熱力学の架け橋
  3. 可視光応答性光触媒を用いる高反応性アルキンの生成
  4. 立体選択的なスピロ環の合成
  5. マイクロ波とイオン性液体で単層グラフェン大量迅速合成
  6. 第15回日本化学連合シンポジウム「持続可能な社会構築のための見分…
  7. ボロン酸エステル/ヒドラゾンの協働が実現する強固な細胞Click…
  8. 微生物の電気でリビングラジカル重合

注目情報

ピックアップ記事

  1. 電化で実現する脱炭素化ソリューション 〜蒸留・焼成・ケミカルリサイクル〜
  2. テトラセノマイシン類の全合成
  3. スーパーブレンステッド酸
  4. チャン転位(Chan Rearrangement)
  5. 新しい構造を持つゼオライトの合成に成功!
  6. データ駆動型R&D組織の実現に向けた、MIを組織的に定着させる3ステップ
  7. Passerini反応を利用できるアルデヒドアルデヒド・イソニトリル・カルボン酸・アミン(
  8. ホウ素の力でイオンを見る!長波長光での観察を可能とするアニオンセンサーの開発
  9. 三井化学、「環状オレフィンコポリマー(商標:アペル)」の生産能力増強を決定
  10. 白い器を覆っている透明なガラスってなんだ?

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年2月
 123456
78910111213
14151617181920
21222324252627
28  

注目情報

最新記事

【太陽ホールディングス】新卒採用情報(2026卒)

■■求める人物像■■「大きな志と好奇心を持ちまだ見ぬ価値造像のために前進できる人…

産総研の研究室見学に行ってきました!~採用情報や研究の現場について~

こんにちは,熊葛です.先日,産総研 生命工学領域の開催する研究室見学に行ってきました!本記事では,産…

第47回ケムステVシンポ「マイクロフローケミストリー」を開催します!

第47回ケムステVシンポジウムの開催告知をさせて頂きます!第47回ケムステVシンポジウムは、…

【味の素ファインテクノ】新卒採用情報(2026卒)

当社は入社時研修を経て、先輩指導のもと、実践(※)の場でご活躍いただきます。「いきなり実践で…

MI-6 / エスマット共催ウェビナー:デジタルで製造業の生産性を劇的改善する方法

開催日:2024年11月6日 申込みはこちら開催概要デジタル時代において、イノベーション…

窒素原子の導入がスイッチング分子の新たな機能を切り拓く!?

第630回のスポットライトリサーチは、大阪公立大学大学院工学研究科(小畠研究室)博士後期課程3年の …

エントロピーの悩みどころを整理してみる その1

Tshozoです。 エントロピーが煮詰まってきたので頭の中を吐き出し整理してみます。なんでこうも…

AJICAP-M: 位置選択的な抗体薬物複合体製造を可能にするトレースレス親和性ペプチド修飾技術

概要味の素株式会社の松田豊 (現 Exelixis 社)、藤井友博らは、親和性ペ…

材料開発におけるインフォマティクス 〜DBによる材料探索、スペクトル・画像活用〜

開催日:10/30 詳細はこちら開催概要研究開発領域におけるデジタル・トランスフォーメー…

ロベルト・カー Roberto Car

ロベルト・カー (Roberto Car 1947年1月3日 トリエステ生まれ) はイタリアの化学者…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP