[スポンサーリンク]

化学者のつぶやき

危ない試薬・面倒な試薬の便利な代替品

[スポンサーリンク]

 

実験室レベルでは、未だに危険な試薬を扱わざるを得ない場合も多いかと思います。tert-ブチルリチウムによる痛ましい事故は化学徒の間で語り継がれていますが、ハインリッヒの法則によると、1件の重大事故の裏には 29 件の軽微な事故があり、さらに300 件のヒヤリハット事例があると言い、何らかのインシデントは毎日どこかのラボで起きていることでしょう。実験における安全確保は、当事者の学生だけでなく、むしろ指導教員が配慮しなければなりませんが、昔取った杵柄を断捨離できずにわざわざ危険を冒させてしまう人もいるでしょう。令和のいま、研究者やメーカーの努力により、危険性 (爆発性・毒性など) を抑えた便利な代替試薬がたくさん市販されています。本稿では、筆者が使ってみて「これは便利だ!」と思った代替試薬についていくつかまとめてみました。

ジアゾメタン→ TMSジアゾメタン

まずは有名どころですがトリメチルシリルジアゾメタン (TMSジアゾメタン) の紹介です。ジアゾメタンはカルボン酸→メチルエステルへの選択的変換において大いに有用な試薬ですが、高い爆発性と毒性 (発がん性)、さらに要事調製が必要という欠点を持ちます。要事調整に用いる前駆体の Diazald®も取扱に注意を有するうえ、なんと単純な Diazald® 自体は国内で購入できなくなっているようです (メーカーサイト)。そこで、低爆発性で取扱容易な TMSジアゾメタン が活躍します! TMS ジアゾメタンの反応性はジアゾメタンと同等であり、ハンドリングしやすい n-ヘキサン溶液として市販されています。クエンチは泡が出なくなるまで酢酸を加えるだけ。もちろん注意を払いながらドラフト内で扱う必要はありますが、あまりに使い易すぎてもうジアゾメタンなんぞ一生作りたくなくなります。ネックなのは非常に高価だということでしょうか…。
関連記事
ジアゾメタン
ジアゾメタン diazomethane

塩化ホスホリル (オキシ塩化リン)→ ジホスホリルクロリド

Vilsmeier-Haack反応 といえば electron-rich な芳香環へのホルミル基導入反応の常法です。反応中間体となる Vilsmeier 試薬の調整に DMF と塩化ホスホリル (オキシ塩化リン、POCl3を用いますが、この塩化ホスホリルは毒物及び劇物取締法に基づく医薬用外毒物に指定されており、積極的に用いるのは避けたい試薬です (帳簿を書いたりもめんどいですよね)。また代替として用いられる塩化オキサリルや塩化チオニルは塩化水素を発生しやすいことから、これらもハンドリングに面倒が生じます。そこで役に立つのが、ジホスホリルクロリド (ホスホロジクロリド酸無水物)! こちらの試薬は構造的に「塩化アセチルに対する無水酢酸」のようなものであり、POCl3 と同じ反応機構で DMF から Vilsmeier 試薬を生じます。性状は標準状態で液体ですが、発煙・刺激臭がほとんど無い点で POCl3 よりもハンドリング容易です。またジホスホリルクロリドは分子内環化反応にも応用されています (試薬メーカーサイト)。

関連記事
ヴィルスマイヤー・ハック反応 Vilsmeier-Haack Reaction

金属ナトリウム→ 金属ナトリウム分散体

こちらの記事をご参照ください。

四酸化オスミウム→PI酸化オスミウム

四酸化オスミウムを用いた cis-1,2-ジオールの合成は他の試薬で代替がほぼ効かない反応です。しかし、四酸化オスミウムは猛毒であり、しかも揮発性があるため取り扱いには細心の注意を要します。NMO などの再酸化剤を加えて触媒量で用いるのが一般的ではありますが、それでも後処理が面倒臭いものです。そこで活躍するのが、小林修先生らが開発した PI酸化オスミウムです。これは酸化オスミウムを高分子カルセランド型 (Polymer-Incarcerated) のポリマーに担持させた固定化触媒で、反応物との分離が容易繰り返しの使用が可能揮発性の抑制による毒性の低減低減高い反応性および立体選択性といった良いとこ取りの試薬となっています。再酸化剤としてフェリシアン化カリウム ([K3Fe(CN)6]) を使用する場合に適しているとのことです。さらに対溶剤性を向上したPI酸化オスミウムII型も市販されています。詳しくはメーカーサイトをご覧ください。

関連記事
四酸化オスミウム Osmium Tetroxide (OsO4)

ベンゼンスルホニルクロリド → p-トルエンスルホニルクロリド
ブロモ酢酸エチル→ブロモ酢酸メチル

そこを変えて何が違うの ?? という感じに思えますが、前者は医薬用外毒物に該当するため、替えが効くなら後者の方がいろいろ面倒臭くありません。というだけ。

二塩化硫黄→ビス(フェニルスルホニル)スルフィド

硫黄源として有用な二塩化硫黄は古い合成論文にはよく出てくるものの、近年はその有害性から市販を取りやめたメーカーが多いようで、入手困難になっています。その代替品がビス(フェニルスルホニル)スルフィドです。東京化成工業 (TCI) の製品チラシには以下のような利点が記載されています。

  • アリールリチウムなどの求核剤と温和な条件下で反応し,剛直骨格を含む種々の チオフェン環の形成が可能
  • 毒性が高く取扱い困難な二塩化硫黄(SCl2)の有用な合成等価体
  • 反応により副生するベンゼンスルフィン酸は分液,精製等で容易に除去可能

本試薬は固体で取り扱いやすいのもポイントです。硫黄が3連続で結合した突飛な化合物に見えますが、脱離基が Cl から ベンゼンスルホニルに変わっただけだと思えば、ああそうかと納得いくと思います。

二酸化硫黄 → DABSO

こちらは二酸化硫黄の等価体。こちらの記事をご参照ください。

一酸化炭素 → ギ酸トリクロロフェニル or N-ホルミルサッカリン

いずれも静岡県立大学の眞鍋敬先生が開発された一酸化炭素の等価体。安全なホルミル源として有用です。詳細はこちらの記事をご参照ください。

溶媒

小ネタですが、毒性・発癌性などの観点からプロセス化学などの現場では忌避される傾向のある溶媒の代替品をリストアップします。どうしても値は張りますが、安全性を考える上では実験室レベルでも変えていくのが望ましいでしょう。

  • ベンゼン    → トルエン、キシレン
  • n-ヘキサン   →   n-ヘプタン
  • 1,4-ジオキサン →   シクロペンチルメチルエーテル (CPME)
  • THF      →   2-メチルテトラヒドロフラン (2-MeTHF)

おわりに

大学の実験室は産業界に比べて規制が緩く (または遵守されず)、明らかに危険な試薬を昔ながらの慣習で使わせてしまう事例が今でも多いと思われます。安全確保は実験において何よりも大事です。調べきった上で他に方法がないのであればともかく、できるだけ危険な試薬の使用は回避し、自分も周りも指導学生も安心して (ただし油断は禁物) 実験を進められるように工夫したいものです。

関連記事

有機アジド(2):爆発性
Hazardous Laboratory Chemicals Disposal Guide

関連書籍

Avatar photo

DAICHAN

投稿者の記事一覧

創薬化学者と薬局薬剤師の二足の草鞋を履きこなす、四年制薬学科の生き残り。
薬を「創る」と「使う」の双方からサイエンスに向き合っています。
しかし趣味は魏志倭人伝の解釈と北方民族の古代史という、あからさまな文系人間。
どこへ向かうかはfurther research is needed.

関連記事

  1. ノーベル化学賞は化学者の手に
  2. アメリカ大学院留学:卒業まであと一歩!プロポーザル試験
  3. 10手で陥落!(+)-pepluanol Aの全合成
  4. 1,3-ジエン類のcine置換型ヘテロアリールホウ素化反応
  5. 材料開発の変革をリードするスタートアップのBizポジションとは?…
  6. 気になるあの会社~東京エレクトロン~
  7. 有機反応を俯瞰する ーシグマトロピー転位
  8. 高専の化学科ってどんなところ? -その 2-

注目情報

ピックアップ記事

  1. バリー・ハリウェル Barry Halliwell
  2. Side Reactions in Organic Synthesis II
  3. 第141回―「天然と人工の高分子を融合させる」Sébastien Perrier教授
  4. ESIPTを2回起こすESDPT分子
  5. 材料・製品開発組織における科学的考察の風土のつくりかた ー マテリアルズ・インフォマティクスを活用し最大限の成果を得るための筋の良いテーマとは ー
  6. アスピリンの梗塞予防検証 慶応大、1万人臨床試験
  7. DAST類縁体
  8. 【ケムステSlackに訊いて見た④】化学系学生の意外な就職先?
  9. 光と水で還元的環化反応をリノベーション
  10. 鉄鋼のように強いポリプロピレン

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年1月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

第23回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

持続可能な社会の実現に向けて、太陽電池は太陽光発電における中心的な要素として注目…

有機合成化学協会誌2025年3月号:チェーンウォーキング・カルコゲン結合・有機電解反応・ロタキサン・配位重合

有機合成化学協会が発行する有機合成化学協会誌、2025年3月号がオンラインで公開されています!…

CIPイノベーション共創プログラム「未来の医療を支えるバイオベンチャーの新たな戦略」

日本化学会第105春季年会(2025)で開催されるシンポジウムの一つに、CIPセッション「未来の医療…

OIST Science Challenge 2025 に参加しました

2025年3月15日から22日にかけて沖縄科学技術大学院大学 (OIST) にて開催された Scie…

ペーパークラフトで MOFをつくる

第650回のスポットライトリサーチには、化学コミュニケーション賞2024を受賞された、岡山理科大学 …

月岡温泉で硫黄泉の pH の影響について考えてみた 【化学者が行く温泉巡りの旅】

臭い温泉に入りたい! というわけで、硫黄系温泉を巡る旅の後編です。前回の記事では群馬県草津温泉をご紹…

二酸化マンガンの極小ナノサイズ化で次世代電池や触媒の性能を底上げ!

第649回のスポットライトリサーチは、東北大学大学院環境科学研究科(本間研究室)博士課程後期2年の飯…

日本薬学会第145年会 に参加しよう!

3月27日~29日、福岡国際会議場にて 「日本薬学会第145年会」 が開催されま…

TLC分析がもっと楽に、正確に! ~TLC分析がアナログからデジタルに

薄層クロマトグラフィーは分離手法の一つとして、お金をかけず、安価な方法として現在…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー