[スポンサーリンク]

化学者のつぶやき

生体医用イメージングを志向した第二近赤外光(NIR-II)色素:②合成蛍光色素

[スポンサーリンク]

バイオイメージングにおけるの先端領域の一つである「第二近赤外光(NIR-II)色素」についての総説を取り上げます。前回記事①からの続きです。

“Recent advances in near-infrared II fluorophores for multifunctional biomedical imaging”
Ding F., Zhan, Y., Lu, X., Sun, Y. Chem. Sci. 2018, 9, 4370-4380. doi:10.1039/C8SC01153B

【概要】 癌などの病変部や生体組織の構造を生きた動物体内や組織切片で蛍光イメージングする目的に、組織透過性の高い近赤外光が用いられてきた。これまでは主に 700-900 nm の第一近赤外光(NIR-I) を用いた蛍光イメージングが行われてきたが、光散乱や自家蛍光の存在のため、光情報が得られる組織深部までの距離が短いこと、分解能が低いこと、バックグラウンドが高いことなどが問題であった。 この問題を解決する手法として、光散乱や自家蛍光の影響がより少ない第二近赤外光(NIR-II, 1000-1700 nm) を用いたイメージング法に注目が集まっている。どのような蛍光体(色素)が用いられているか、その利点や現在の問題、今後の展開について概観する。

3. 合成蛍光色素

3.1 D-A-D型色素

合成蛍光色素の利点は、量比を一定程度制御しつつ、小さなサイズの分子で生体分子を可視化できることである。また、ナノ粒子型の無機蛍光体とは異なり、肝臓などの臓器への非特異的な蓄積が抑制されることも利点の一つである 。現在開発されている主な NIR-II 合成蛍光色素は、Donor-Acceptor-Donor(D-A-D)型色素とポリメチン型蛍光色素に分類される。

図3.NIR-II有機色素ライブラリ

3.1.1 D-A-D 型色素

材料科学分野で開発されていた色素構造をヒントに、 NIR-II イメージング色素が開発されてきた。分子内に電子供与性と電子求引性の構造を併せ持つ Donor-Acceptor(D-A)型色素は、エネルギーギャップが小さく、 900 nm 付近の蛍光を発することが知られていた。そこで更にDonor 分子を加えた D-A-D 型色素が、更なる長波長化を引き起こし、 NIR-II(1000~1100 nm)の蛍光を発することが見いだされた。

第一世代の NIR-II 色素である CH1055 は、吸収波長が 750 nm で蛍光波長が 1055 nm であり、量子収率が 0.03%であった。また、持続的に臓器に維持されるナノ粒子型蛍光体とは異なり、CH1055 は、その 90%が 24 時間以内に体外排泄された。CH1055 の蛍光量子収率は、水溶液中で 0.03%であり、有機溶媒に比べ大きく低下する。これは、水と色素の相互作用によると考えられており、水の色素への接近を防ぐ Shield(S) 基として、色素に嵩高い置換基を導入した S-D-A-D-S 型蛍光色素が開発された 。その代表例が IR-FTAP (R1 =PEG)であり、水溶液中での量子収率は 5.3%まで向上した。

3.1.2 ポリメチン型色素

D-A-D 型色素の蛍光波長は NIR-II の領域にあるものの、励起波長は NIR-I の領域にあるため、励起・蛍光波長ともに NIR-II の領域にあるものの方が、組織深部のイメージングにとって有利である。ポリメチン型色素であるFlav7は、 励起波長を 1026 nm として、 1045 nm の蛍光を量子収率 0.53%で発する 。

3.2 水溶性・ 生体適合性

D-A-D 型色素にしろポリメチン型色素にしろ、そのままでは水に不溶性であり、生体イメージングに用いることはできない。このため、PEG 修飾をする、タンパク質に結合させる、水溶性高分子と複合化させる、リン脂質からなるナノ粒子に取り込ませるなどの処置が行われている。

3.3 バイオイメージングへの応用

CH1055 の例を一つ上げると、 affibody(抗体を模した小タンパク質)のうち、がん組織に集積するものに CH1055 を繋ぎ、皮膚がん組織をSignal-to-background 比 15 倍で可視化している(図4) 。更にはこのシグナルをもとに、がん組織を切除することに成功している。

図4. CH1055 を用いたがんのイメージング

3.4 現状の課題

合成や精製の難度が高いため、色素の誘導体化は困難なことが多い。合成分子とはいえ、分子量が大きく(多くの場合 1000 を超えている) 、サイズをいかにして小さくするかも大きな課題である。また、水溶性が低いことや量子収率の低さ(せいぜい数%)、波長の長波長化(現状は最大で 1300 nm 台)など問題は多く、ブレークスルーとなるような新たな分子設計コンセプトが必要とされている。

次回記事③に続く】

(図3・4は冒頭論文(Chem. Sci. 2018, 9, 4370)より、 CC BY-NC 3.0 licenseの規定に従い引用)
【本シリーズ記事は、糖化学ノックイン領域において実施している領域内総説抄録会の過去資料をブログ記事に転記し、一般向けに公開しているものです】

関連リンク

 

Avatar photo

糖化学ノックイン

投稿者の記事一覧

2021年度科学研究費助成事業 学術変革領域研究(B)「糖化学ノックイン」の広報アカウントです。生体分子現象の一つ「糖タンパク質の膜動態」にフォーカスし、生命系を理解し制御するための新たな反応化学技術「ケミカルノックイン」の確立を目指しています。
領域ホームページ:https://glycan-chemical-knockin.com/

関連記事

  1. 細胞懸濁液をのせて、温めるだけで簡単に巨大ながんスフェロイドがで…
  2. 化学に関係ある国旗を集めてみた
  3. カメレオン変色のひみつ 最新の研究より
  4. 高分子鎖デザインがもたらすポリマーサイエンスの再創造|オンライン…
  5. 2018年3月2日:ケムステ主催「化学系学生対象 企業合同説明会…
  6. 乙卯研究所 研究員募集 2023年度
  7. 量子コンピューターによるヒュッケル分子軌道計算
  8. バイオ触媒によるトリフルオロメチルシクロプロパンの不斉合成

注目情報

ピックアップ記事

  1. 分子の動きを電子顕微鏡で観察
  2. 高分子討論会:ソーラーセイルIKAROS
  3. [12]シクロパラフェニレン : [12]Cycloparaphenylene
  4. 米社が液晶パネルのバックライトにカーボン・ナノチューブを採用
  5. 工業製品コストはどのように決まる?
  6. 生体分子を活用した新しい人工光合成材料の開発
  7. 焦宁 Ning Jiao
  8. 日本国際賞―受賞化学者一覧
  9. Reaction Plus:生成物と反応物から反応経路がわかる
  10. マテリアルズ・インフォマティクスを実践するためのベイズ最適化入門 -デモンストレーションで解説-

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年1月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

有機合成化学協会誌2024年12月号:パラジウム-ヒドロキシ基含有ホスフィン触媒・元素多様化・縮環型天然物・求電子的シアノ化・オリゴペプチド合成

有機合成化学協会が発行する有機合成化学協会誌、2024年12月号がオンライン公開されています。…

「MI×データ科学」コース ~データ科学・AI・量子技術を利用した材料研究の新潮流~

 開講期間 2025年1月8日(水)、9日(木)、15日(水)、16日(木) 計4日間申込みはこ…

余裕でドラフトに収まるビュッヒ史上最小 ロータリーエバポレーターR-80シリーズ

高性能のロータリーエバポレーターで、効率良く研究を進めたい。けれど設置スペースに限りがあり購入を諦め…

有機ホウ素化合物の「安定性」と「反応性」を両立した新しい鈴木–宮浦クロスカップリング反応の開発

第 635 回のスポットライトリサーチは、広島大学大学院・先進理工系科学研究科 博士…

植物繊維を叩いてアンモニアをつくろう ~メカノケミカル窒素固定新合成法~

Tshozoです。今回また興味深い、農業や資源問題の解決の突破口になり得る窒素固定方法がNatu…

自己実現を模索した50代のキャリア選択。「やりたいこと」が年収を上回った瞬間

50歳前後は、会社員にとってキャリアの大きな節目となります。定年までの道筋を見据えて、現職に留まるべ…

イグノーベル賞2024振り返り

ノーベル賞も発表されており、イグノーベル賞の紹介は今更かもしれませんが紹介記事を作成しました。 …

亜鉛–ヒドリド種を持つ金属–有機構造体による高温での二酸化炭素回収

亜鉛–ヒドリド部位を持つ金属–有機構造体 (metal–organic frameworks; MO…

求人は増えているのになぜ?「転職先が決まらない人」に共通する行動パターンとは?

転職市場が活発に動いている中でも、なかなか転職先が決まらない人がいるのはなぜでしょう…

三脚型トリプチセン超分子足場を用いて一重項分裂を促進する配置へとペンタセンクロモフォアを集合化させることに成功

第634回のスポットライトリサーチは、 東京科学大学 物質理工学院(福島研究室)博士課程後期3年の福…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP