[スポンサーリンク]

化学者のつぶやき

生体医用イメージングを志向した第二近赤外光(NIR-II)色素:①単層カーボンナノチューブ

[スポンサーリンク]

糖化学ノックイン領域では膜動態を標的とした研究を志向しているため、バイオイメージングについての理解も深めておくことが必要になります。今回はバイオイメージングにおけるの先端領域の一つである「第二近赤外光(NIR-II)色素」についての総説を取り上げます。

“Recent advances in near-infrared II fluorophores for multifunctional biomedical imaging”
Ding F., Zhan, Y., Lu, X., Sun, Y. Chem. Sci. 2018, 9, 4370-4380. doi:10.1039/C8SC01153B

【概要】 癌などの病変部や生体組織の構造を生きた動物体内や組織切片で蛍光イメージングする目的に、組織透過性の高い近赤外光が用いられてきた。これまでは主に 700-900 nm の第一近赤外光(NIR-I) を用いた蛍光イメージングが行われてきたが、光散乱や自家蛍光の存在のため、光情報が得られる組織深部までの距離が短いこと、分解能が低いこと、バックグラウンドが高いことなどが問題であった。 この問題を解決する手法として、光散乱や自家蛍光の影響がより少ない第二近赤外光(NIR-II, 1000-1700 nm) を用いたイメージング法に注目が集まっている。どのような蛍光体(色素)が用いられているか、その利点や現在の問題、今後の展開について概観する。

1. 序論

これまで小動物やヒト(前)臨床試験におけるイメージングでは、蛍光、光音響、ポジトロン断層法(PET)、MRI などが用いられてきた。その中でも第一近赤外光(NIR-I, 700-900 nm)を用いた蛍光イメージングは、感度、撮像速度、安全性、及びコストの観点から生物医学研究で汎用されてきた。NIR-Iは可視光に比べて組織透過性が高いため、 小動物や組織切片の深部イメージングに適している。この特徴を活かして癌組織を光らせることで病変範囲を可視化し、外科的に除去する方法(蛍光イメージガイド手術) が開発されてきた。

最近になり、 NIR-I よりも更に長波長の 第二近赤外光(NIR-II、1000-1700 nm)を用いたイメージングが注目を集めている。 光散乱や光吸収によって組織深部まで光は透過しにくいが、長波長光はその影響を受けにくい(図 1) 。特にNIR-II 領域ではその影響が低いため、より深部の組織情報を得ることができる。加えて検出できる光強度が高くなるため露光時間が短くなり、時間分解能を向上させることができる。また、光散乱は標的部位から発せられる蛍光をボケさせるが、 NIR-IIイメージングでは光散乱の影響が抑制されるため、空間分解能も向上する。更にこの波長域では、 自家蛍光(組織成分由来の蛍光)の強度も低く 、バックグラウンド蛍光を抑制した高コントラストな蛍光画像が得られる。

このように NIR-II 蛍光イメージングは大きな可能性を秘めているが、生体組織・生体分子を光らせる蛍光体(色素)の開発は、まだ発展途上である。本記事では、現在開発されている蛍光体(色素)として、カーボンナノチューブ、 合成蛍光色素、共役高分子、 量子ドット、希土類含有ナノ粒子についてそれぞれの進歩を紹介する。

図1. a) NIR の波長域。 b) 光散乱と波長の関係。 c) 自家蛍光と波長の関係

2. 単層カーボンナノチューブ(SWCNTs)

2. 1 構造と分光学的性質

SWCNTsは、単層グラフェンを筒状に丸めた構造を持ち、機械的強度が高く優れた分光学的性質を持つことから、バイオイメージングツールとして脚光を浴びている 。 バンド間遷移に伴い光吸収が起こるとともに蛍光を発し、そのストークスシフトが大きいことが知られている。これまでバイオイメージングで用いられてきた SWCNTs は、 直径が 0.7~1.1 nm のものであったが、NIR-I(700-900 nm)領域の光を吸収し、 NIR-IIa (1000-1400 nm)領域 の蛍光を発する。 また、SWCNTsの直径と遷移エネルギーには反比例の関係が知られており、より大きな直径(0.9~1.4 nm) の SWCNTs を作成することで、蛍光を NIR-IIb(1500-1700 nm)の領域に長波長シフトさせ、光散乱と自家蛍光の影響を大きく抑制できることが報告されている。

2.2 生体適合性

SWCNTs は水に溶けないために、そのままでは生体イメージングに応用することはできず、水溶性を向上させる表面修飾が必要となる。 表面修飾として、水溶性官能基の共有結合性化学修飾と、 PEG などの水溶性ポリマーによる非共有結合性修飾がある 。前者は、多くの研究グループが試みたアプローチではあるが、π共役構造を損傷するため蛍光強度が低下することが示されている。これに対し、後者のアプローチでは、PEG修飾リン脂質を疎水性相互作用を通じて吸着させることで、蛍光強度の低下を抑制しつつも水溶性・生体適合性を向上させ、バイオイメージングへ応用している。

2.3 バイオイメージングへの応用

SWCNTs により、脳血管のイメージングを行い、 NIR-IIb イメージングの有用性が示されている。合成蛍光色素であるインドシアニングリーンはNIR-I の蛍光を発するが、脳血管の微細構造は確認できない。一方、直径が 0.7~1.1 nm と 0.9~1.4 nm の
SWCNTs はそれぞれ、 NIR-IIa と NIR-IIb の蛍光を発するが、 NIR-I イメージングに比べ明確に血管の構造が観察される(図 2) 。更に NIR-IIb イメージングでは、より高い空間分解能とSignal-to-background 比で血管構造を可視化することに成功している。

図 2. イメージングの波長域と分解能と SB 比の関係。 a) NIR-I 色素によるイメージング。 b, c) SWCNTs(直径小(b)と直径大(c))によるNIR-IIイメージング

2.4 現状の課題

SWCNTs は、六員環格子の配列の異なる様々な構造のものが存在するが、バイオイメージングには、それらの混合物が用いられている。励起波長や蛍光波長がそれぞれで異なるため、最適な波長でイメージングすることができない。これは蛍光強度の低下に繋がり、イメージングの質を低下させる。高感度・高分解能のイメージングには、精製方法の最適化や蛍光量子収率の向上が必要とされている 。

次回記事②に続く】

(図1・2は冒頭論文(Chem. Sci. 2018, 9, 4370)より、 CC BY-NC 3.0 licenseの規定に従い引用)
【本シリーズ記事は、糖化学ノックイン領域において実施している領域内総説抄録会の過去資料をブログ記事として転記し、一般公開しているものです】

関連リンク

 

 

Avatar photo

糖化学ノックイン

投稿者の記事一覧

2021年度科学研究費助成事業 学術変革領域研究(B)「糖化学ノックイン」の広報アカウントです。生体分子現象の一つ「糖タンパク質の膜動態」にフォーカスし、生命系を理解し制御するための新たな反応化学技術「ケミカルノックイン」の確立を目指しています。
領域ホームページ:https://glycan-chemical-knockin.com/

関連記事

  1. スペクトルから化合物を検索「KnowItAll」
  2. 有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~
  3. 【速報】ノーベル化学賞2013は「分子動力学シミュレーション」に…
  4. 第37回ケムステVシンポ「抗体修飾法の最前線 〜ADC製造の基盤…
  5. ポンコツ博士の海外奮闘録XXIII ~博士の危険地帯サバイバル …
  6. 塩にまつわるよもやま話
  7. 円偏光スピンLEDの創製
  8. 第94回日本化学会付設展示会ケムステキャンペーン!Part I

注目情報

ピックアップ記事

  1. (+)-11,11′-Dideoxyverticillin Aの全合成
  2. 第23回 医療、工業、軍事、広がるスマートマテリアル活躍の場ーPavel Anzenbacher教授
  3. カルボニル化を伴うクロスカップリング Carbonylative Cross Coupling
  4. 日本化学会 第104春季年会 付設展示会ケムステキャンペーン Part2
  5. 密度汎関数法の基礎
  6. ノーベル受賞者、東北大が米から招請
  7. 化学者のためのエレクトロニクス講座~電解で起こる現象編~
  8. 有機・高分子関連技術が一堂に会す「オルガテクノ2005」開催へ
  9. CFDで移動現象論111例題 – Ansys Fluentによる計算解法 –
  10. ブーボー/ボドロー・チチバビン アルデヒド合成 Bouveault/Bodroux-Chichibabin Aldehyde Synthesis

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年1月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

植物由来アルカロイドライブラリーから新たな不斉有機触媒の発見

第632回のスポットライトリサーチは、千葉大学大学院医学薬学府(中分子化学研究室)博士課程後期3年の…

MEDCHEM NEWS 33-4 号「創薬人育成事業の活動報告」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

第49回ケムステVシンポ「触媒との掛け算で拡張・多様化する化学」を開催します!

第49回ケムステVシンポの会告を致します。2年前(32回)・昨年(41回)に引き続き、今年も…

【日産化学】新卒採用情報(2026卒)

―研究で未来を創る。こんな世界にしたいと理想の姿を描き、実現のために必要なものをうみだす。…

硫黄と別れてもリンカーが束縛する!曲がったπ共役分子の構築

紫外光による脱硫反応を利用することで、本来は平面であるはずのペリレンビスイミド骨格を歪ませることに成…

有機合成化学協会誌2024年11月号:英文特集号

有機合成化学協会が発行する有機合成化学協会誌、2024年11月号がオンライン公開されています。…

小型でも妥協なし!幅広い化合物をサチレーションフリーのELSDで検出

UV吸収のない化合物を精製する際、一定量でフラクションをすべて収集し、TLCで呈色試…

第48回ケムステVシンポ「ペプチド創薬のフロントランナーズ」を開催します!

いよいよ本年もあと僅かとなって参りましたが、皆様いかがお過ごしでしょうか。冬…

3つのラジカルを自由自在!アルケンのアリール–アルキル化反応

アルケンの位置選択的なアリール–アルキル化反応が報告された。ラジカルソーティングを用いた三種類のラジ…

【日産化学 26卒/Zoomウェビナー配信!】START your ChemiSTORY あなたの化学をさがす 研究職限定 キャリアマッチングLIVE

3日間で10領域の研究職社員がプレゼンテーション!日産化学の全研究領域を公開する、研…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP