[スポンサーリンク]

化学者のつぶやき

ケクレン、伸長(新調)してくれん?

[スポンサーリンク]

Bi(OTf)3触媒によるビニルエーテルの環化反応によりジグザグエッジ伸長型ケクレンが合成された。合成されたケクレン類縁体はベンゼノイド型のπ共役構造であることが明らかにされた。

ケクレンの化学

ケクレンは12個のベンゼン環が環状に縮環した多環芳香族炭化水素である。その構造から、ケクレンはアヌレノイド型とベンゼノイド型のどちらのπ電子分布をもつかが注目されていた(図1左上)。1978年にDiederichとStaabがケクレンを初めて合成し、ケクレンがベンゼノイド型芳香族であることを明らかにした[1]。ケクレンの合成以降、縮環様式の異なるケクレン類縁体が合成されてきた[2]。例として、ベンゼン環を減らした類縁体(コラニュレン[(62, 61, 62, 61, 62)2]; 図1左下)や辺の数を増やした類縁体(セプチュレン・オクチュレン; 図1 中央下)がある[3–5]。これらはケクレンと同様にベンゼノイド型芳香族である。

著者らは今回、Bi(OTf)3触媒によるビニルエーテルの環化反応によりジグザグエッジ伸長型ケクレンを合成した。また、種々の解析手法を用いてジグザグエッジ伸長型ケクレンの芳香族性を明らかにした。ちなみに、著者らは本反応を用いて、いくつかのケクレン類縁体を合成している[6, 7]

図1. ケクレンとケクレン類縁体

 

Expanded Kekulenes

Fan, W.; Han, Y.; Wang, X.; Hou, X.; Wu, J. J. Am. Chem. Soc. 2021, 143, 13908–13916.

DOI: 10.1021/jacs.1c06757

論文著者の紹介

研究者:Jishan Wu

研究者の経歴:

1993–1997 B.Sc., Wuhan University, China

1997–2000 M.Sc., Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, China (Prof. Xianhong Wang and Prof. Fosong Wang)

2000–2004 Ph.D., Max-Planck Institute for Polymer Research, Germany (Prof. Klaus Müllen)

2004–2005 Project leader, Max-Planck Institute for Polymer Research, Germany

2005–2007 Postdoc, University of California, USA (Prof. Sir Fraser Stoddart)

2007–2011 Assistant Professor, National University of Singapore, Shingapore

2012–2017 Associate Professor, National University of Singapore, Shingapore

2017– Professor, National University of Singapore, Shingapore

研究内容:構造有機化学、超分子化学、近赤外線吸収色素の開発

 

論文の概要

著者らはまず、種々のビルディングブロックを用いた鈴木–宮浦カップリングにより前駆体1を合成した(図2A)。続いてBi(OTf)3触媒を用いたビニルエーテルの環化反応により[m,n] = [3,4], [4,4], [3,5], [4,5]のケクレン類縁体2を合成した。

1H NMRにおいて、2の環内側の水素シグナルは全て低磁場領域(9.3–11.3 ppm)に現れた(図2B)。2がアヌレノイド型芳香族であれば、環内側の水素は分子全体に広がる環電流から遮蔽効果を受け、シグナルは芳香族領域よりも高磁場で観測されると考えられる。今回、環内側の水素シグナルが低磁場領域に出現したので、2は局所的に芳香族性をもつベンゼノイド型芳香族であると考えられる。

理論計算を用いて2の芳香族性を解析した。ここでは[m,n] = [3,5]の場合(2a)について示す(図2C)。2aの最安定構造における炭素炭素結合長に着目すると、2aの頂点に位置する環C1では結合交替が見られた一方で、ベンゼン環C2およびアントラセン環C3では結合交替が見られなかった。さらに、C1のNICS値はC2およびC3よりも小さい負の値を示したので、C1の芳香族性はC2C3よりも低いといえる。加えて、2aの磁気的遮蔽効果(ICSS: isochemical shielding surface)を可視化すると、C2C3環内は強く遮蔽されており、2aの環内側、および外側周辺では脱遮蔽されている(図2D)。このICSS解析の結果は2aのNMRスペクトルを裏付けるものである。これらの理論計算結果は、どれもベンゼン/アントラセン環(C2, C3)へのπ共役電子の分布を示唆している。したがって、理論計算からも2aはベンゼノイド型芳香族であることが支持された。また、一連のジグザグエッジ伸長型ケクレン2でも同様の計算結果が得られたので、2はベンゼノイド型であると結論づけた。

図2. (A) [m,n]シクロアレーン2の合成と共鳴構造 (B) 2の1H NMRスペクトル (C) 最安定構造における結合長とNICS値 (D) 2aの磁気的遮蔽効果(ICSS)の等高線図 (論文から一部改変)

以上、Bi(OTf)3触媒によるビニルエーテルの環化反応によりジグザグエッジ伸長型ケクレンが合成された。実験と理論計算の両面から、合成されたケクレン類縁体はケクレンと同様にベンゼノイド型芳香族であることが明らかにされた。また、このケクレン類縁体がもつ反応性の高いアセン構造は、さらなる化学修飾の足掛かりとなるため、ケクレン類縁体を出発物質とした新たなベルト状分子やナノグラフェンの合成が期待される。

参考文献

  1. Diederich, F.; Staab, H. A. Benzenoid versus Annulenoid Aromaticity: Synthesis and Properties of Kekulene. Angew. Chem., Int. Ed. Engl. 1978, 17, 372–374. DOI: 1002/anie.197803721
  2. Buttrick, J. C.; King, B. T. Kekulenes, Cycloarenes, and Heterocycloarenes: Addressing Electronic Structure and Aromaticity through Experiments and Calculations. Chem. Soc. Rev. 2017, 46, 7–20. DOI: 1039/c6cs00174b
  3. Funhoff, D. J. H.; Staab, H. A. Cyclo[d.e.d.e.e.d.e.d.e.e.]decakisbenzene, a New Cycloarene. Angew. Chem., Int. Ed. Engl. 1986, 25, 742–744. DOI: 1002/anie.198607421
  4. Kumar, B.; Viboh, R. L.; Bonifacio, M. C.; Thompson, W. B.; Buttrick, J. C.; Westlake, B. C.; Kim, M.-S.; Zoellner, R. W.; Varganov, S. A.; Mörschel, P.; Teteruk, J.; Schmidt, M. U.; King, B. T. Septulene: The Heptagonal Homologue of Kekulene. Angew. Chem., Int. Ed. 2012, 51, 12795–12800. DOI: 1002/anie.201203266
  5. Majewski, M. A.; Hong, Y.; Lis, T.; Gregoliński, J.; Chmielewski, P. J.; Cybinśka, J.; Kim, D.; Stępiń, M. Octulene: A Hyperbolic Molecular Belt that Binds Chloride Anions. Angew. Chem., Int. Ed. 2016, 55, 14072–14076. DOI: 1002/anie.201608384
  6. Fan, W.; Han, Y.; Dong, S.; Li, G.; Lu, X.; Wu, J. Facile Synthesis of Aryl-Substituted Cycloarenes via Bismuth(III) Triflate-Catalyzed Cyclization of Vinyl Ethers. CCS Chem. 2020, 2, 1445–1452. DOI: 31635/ccschem.020.202000356
  7. Fan, W.; Matsuno, T.; Han, Y.; Wang, X.; Zhou, Q.; Isobe, H.; Wu, J. Synthesis and Chiral Resolution of Twisted Carbon Nanobelts. J. Am. Chem. Soc. 2021,143, 15924–15929 DOI: 1021/jacs.1c08468
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 死刑囚によるVXガスに関する論文が掲載される
  2. 目指せ抗がん剤!光と転位でインドールの(逆)プレニル化
  3. 配位子で保護された金クラスターの結合階層性の解明
  4. オペレーションはイノベーションの夢を見るか? その1
  5. マテリアルズ・インフォマティクスの推進成功事例セミナー
  6. 特許にまつわる初歩的なあれこれ その2
  7. 高分解能顕微鏡の進展:化学結合・電子軌道の観測から、元素種の特定…
  8. 博士課程と給料

注目情報

ピックアップ記事

  1. リベロマイシンA /Reveromycin A
  2. C-CN結合活性化を介したオレフィンへの触媒的不斉付加
  3. カラス不審死シアノホス検出:鳥インフルではなし
  4. フィリピン海溝
  5. JACSベータ
  6. 固有のキラリティーを生むカリックス[4]アレーン合成法の開発
  7. バートン トリフルオロメチル化 Burton Trifluoromethylation
  8. ダン・シングルトン Daniel Singleton
  9. 万有製薬、つくば研究所を閉鎖
  10. ADC迅速製造装置の実現 -フローリアクタによる抗体薬物複合体の迅速合成-

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年11月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

最新記事

MEDCHEM NEWS 34-1 号「創薬を支える計測・検出技術の最前線」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

医薬品設計における三次元性指標(Fsp³)の再評価

近年、医薬品開発において候補分子の三次元構造が注目されてきました。特に、2009年に発表された論文「…

AI分子生成の導入と基本手法の紹介

本記事では、AIや情報技術を用いた分子生成技術の有機分子設計における有用性や代表的手法について解説し…

第53回ケムステVシンポ「化学×イノベーション -女性研究者が拓く未来-」を開催します!

第53回ケムステVシンポの会告です!今回のVシンポは、若手女性研究者のコミュニティと起業支援…

Nature誌が発表!!2025年注目の7つの技術!!

こんにちは,熊葛です.毎年この時期にはNature誌で,その年注目の7つの技術について取り上げられま…

塩野義製薬:COVID-19治療薬”Ensitrelvir”の超特急製造開発秘話

新型コロナウイルス感染症は2023年5月に5類移行となり、昨年はこれまでの生活が…

コバルト触媒による多様な低分子骨格の構築を実現 –医薬品合成などへの応用に期待–

第 642回のスポットライトリサーチは、武蔵野大学薬学部薬化学研究室・講師の 重…

ヘム鉄を配位するシステイン残基を持たないシトクロムP450!?中には21番目のアミノ酸として知られるセレノシステインへと変異されているP450も発見!

こんにちは,熊葛です.今回は,一般的なP450で保存されているヘム鉄を配位するシステイン残基に,異な…

有機化学とタンパク質工学の知恵を駆使して、カリウムイオンが細胞内で赤く煌めくようにする

第 641 回のスポットライトリサーチは、東京大学大学院理学系研究科化学専攻 生…

CO2 の排出はどのように削減できるか?【その1: CO2 の排出源について】

大気中の二酸化炭素を減らす取り組みとして、二酸化炭素回収·貯留 (CCS; Carbon dioxi…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー