[スポンサーリンク]

化学者のつぶやき

ゴールドエクスペリエンスが最長のラダーフェニレンを産み出す

[スポンサーリンク]

金表面における1,2,4,5-テトラブロモ-3,6-ジメチルベンゼン(TBDMB)の脱ハロゲン型[2+2]環化付加反応により、これまでで最長のラダー[n]フェニレン(L[n]P)が合成された。TBDMBの2つのメチル基による立体障害が本合成の鍵である。

ラダー[n]フェニレン(L[n]P)の合成

ラダー[n]フェニレン(L[n]P:nは縮環したベンゼン環数)はベンゼン環とシクロブタジエン環が、交互かつ梯子状に縮環した分子をさす(図1A)[1]

その芳香族性と反芳香族性の環が交互に縮環した特異な構造に起因する物性に興味がもたれ、L[n]Pの合成が研究されてきた[2]

これまでに報告されたL[n]Pのうち最長はL[5]Pであり、1987年にVollhardtらによりコバルト触媒を用いるアルキンの[2+2+2]環化付加反応を駆使して合成された(図1B)[3]。これより長いL[n]Pの合成は共役系の拡張に伴う溶解度の低下や不安定化が問題となるため、依然として挑戦的課題である。
今回、LiuとShi、Qiu、Liuらの共同研究により、金(111)表面でのTBDMBの脱ハロゲン型[2+2]環化付加反応を用いた、最長のL[n]P(n > 50)の合成が達成された(図1C)。長いL[n]P合成における溶解性と不安定性の問題は、真空チャンバー内の金(111)表面で合成することで回避された。加えて、TBDMBを用いて、メチル基の立体障害で[2+2+2]環化付加反応やジグザグ構造での重合などの副反応を抑制したことが本合成の鍵である。

さらに、得られたL[9]Pの分子軌道分布を測定し、DFT計算によるモデルと比較した。

図1. A. ラダー[n]フェニレンの構造B. L[5]Pの合成 C. 今回の合成法

“Ladder Phenylenes Synthesized on Au(111) Surface via Selective [2+2] Cycloaddition”
Li, D.-Y.; Qiu X.; Li, S.-W.; Ren, Y.-T.; Zhu, Y.-C.; Shu, C.-H.; Hou, X.-Y.; Liu, M.; Shi, X.-Q.; Qiu, X.; Liu, P.-N.
J. Am. Chem. Soc. 2021, 144, 12955–12960. DOI: 10.1021/jacs.1c05586

論文著者の紹介


研究者:Mengxi Liu 
研究者の経歴:
2010–2015                  Ph.D., Peking University, China (Prof. Liu, Z. and Prof. Zhang, Y.)
2015–2019 Assistant Researcher, National Center for Nanoscience and Technology, China
2019–                             Associate Researcher, National Center for Nanoscience and Technology, China
研究内容:新規炭素材料の設計および合成とその物性評価、分子・原子間相互作用測定法

研究者:Xing-Qiang Shi 
研究者の経歴:
2002–2007                  Ph.D., Chinese Academy of Sciences, China (Prof. Zeng, Z.)
2007–2012 Postdoc Researcher, City University of Hong Kong, Hong Kong (Prof. Van Hove, M. A.)
2012                               Postdoc, Hong Kong Baptist University, Hong Kong
2012–2020                  Assistant Professor, Southern University of Science and Technology, China
2020–                             Professor, College of Physics Science and Technology, Hebei University, China
研究内容:DFT計算と理論モデルに基づく表面・界面研究、分子スピンエレクトロニクス

研究者:Xiaohui Qiu
研究者の経歴:
1997–2000 Ph.D., Chinese Academy of Sciences, China (Prof. Bai, C.)
2000–2003                  Postdoc, University of California, Irvine, U.S.A. (Prof. Ho, W.)
2003–2005                  Visiting Scientist, IBM Thomas J. Watson Research Center, Yorktown Height, U.S.A.
2005–2006                  Visiting Scientist, Ohio State University, U.S.A.
2006–                             Professor, National Center for Nanoscience and Technology, China
研究内容:走査型プローブ顕微鏡法、ナノマテリアル/デバイスにおける電子輸送

研究者:Pei-Nian Liu 
研究者の経歴:
2001–2004                  Ph.D., Lanzhou University, China (Prof. Tu, Y.-Q.)
2004–2005 Research Associate, The Hong Kong University of Science and Technology, Hong Kong
2005–2007 Postdoc, Hong Kong Polytechnic University, Hong Kong (Prof. Lau, C.-P.)
2007–2008 Research Associate, The Hong Kong University of Science and Technology, Hong Kong
2008–2012 Associate Professor, East China University of Science and Technology, China
2012–                             Professor, East China University of Science and Technology, China
2014–2015                  Visiting Researcher, University of California, Irvine, U.S.A.
2015–                             Distinguished Professor, East China University of Science and Technology, China
研究内容:表面有機合成および触媒反応

論文の概要

金表面にTBDMBを吸着させ、433 Kに加熱して反応させると、直鎖構造の化合物が走査型電子顕微鏡(STM)で観測された(図2A-a)。直鎖化合物の周りは脱ハロゲン化により生じた臭素原子で取り囲まれている(図2A-b)。直鎖化合物のSTM像および非接触原子間力顕微鏡(nc-AFM)像は、L[n]Pのシミュレーション画像と一致したため、この化合物はL[n]Pであると同定された(図2A-c,d)。STM像上で、進行した反応を種類別に数え上げた結果、[2+2]環化付加反応が95%以上の選択率で進行したことがわかった。また、同像にて約20 nmの直鎖構造が観測された。これは、これまでで最長となるn > 50のL[n]Pに相当する。
続いて、今回初めて合成に成功した長いL[n]Pの物性解明を目指し、L[9]Pの分子軌道分布の実測とDFTによるシミュレーションを比較した。

金表面上では金の電子状態に強く影響されて、L[9]Pの電子構造は測定できなかった。そのためL[9]Pを絶縁体であるNaCl上に移動させて測定した。L[9]Pの中央部(図2B-a中のスポット1)の微分コンダクタンス(dI/dV)スペクトルにおいて、4つのピーク(O2, O1, U1, U2)が観測された(図2B-a)。dI/dVスペクトルはその測定地点の任意の電位での電流の流れやすさが測定できるので、その地点に存在する分子軌道の軌道エネルギー準位が検出できる。つまり、スポット1において4つの分子軌道が存在し、それぞれの軌道エネルギー準位が明らかとなった

次に、得られた軌道エネルギー準位に対応する電位でL[n]P上を走査しdI/dVを測定して、それぞれの分子軌道の分布を描画した(図2B-b, 左)。取得した分子軌道の分布図および電子の占有/非占有は、DFT計算に基づくL[9]Pの一電子酸化種の分子軌道分布と良い一致を示したため、L[9]PはNaCl上で一価のカチオン種として存在することがわかった(図2B-b, 右)。

また、実測のSOMOとSUMOのエネルギー差(1.15 eV)は、種々の近似により(詳細は論文を参照されたい)、計算値(1.11 eV)と一致した(図2C)。これらの結果から、理論計算は長いL[n]Pの電子構造を正確に再現できることが実証された。

図2. A. 合成したL[n]PのSTM像とnc-AFM像 a) 広範囲STM像 b) LPsの拡大STM像と長さの分布 c) 単一鎖のSTM像 d) 単一鎖のnc-AFM像 B. NaCl/Au(111)上のL[9]P+の電子状態 a) dI/dVスペクトル b) dI/dV像 (左: 実測、右: 計算結果) c) L[9]P+の分子軌道のエネルギー準位図 (図2は論文より転載)

以上、金(111)表面におけるTBDMBの脱ハロゲン型[2+2]環化付加反応により、これまでで最長のL[n]Pが合成された。また、合成されたL[9]PはSTM及びnc-AFMを用いてその構造と電子状態が確かめられた。今後、L[n]Pの未知なる性質が明らかにされ、化学の常識が変わるかもしれない。”ゴールドエクスペリエンス”はまだまだ新しいものを産み出すブルーオーシャンである。

用語説明

微分コンダクタンス(dI/dV)スペクトル/

・・・スペクトル: 任意の位置でのそれぞれの電位に対する電流の流れやすさの測定。その位置に分子軌道が存在すれば対応する電位でピークが現れる。横軸の電圧が負の場合は占有分子軌道、正の場合は非占有分子軌道の存在を意味する。なお、占有分子軌道のピークはO(Occupied)、非占有分子軌道のピークはU(Unoccupied)で区別した。

・・・像: 任意の電位でそれぞれの位置での電流の流れやすさのヒートマップ。その電位に対応する分子軌道の概形が描画できる。

参考文献

  1. Miljanić, O. Š.; Vollhardt, K. P. C. [N]Phenylenes: A Novel Class of Cyclohexatrienoid Hydrocarbon. In Carbon-Rich Compounds: From Molecules to Materials; Haley, M. M., Tykwinski, R. R., eds.; Wiley-VCH: Weinheim, 2006; pp 140–197.
  2. Toda, F.; Garratt, P. Four-Membered Ring Compounds Containing Bis(methylene)cyclobutene or Tetrakis(methylene)cyclobutane Moieties. Benzocyclobutadiene, Benzodicyclobutadiene, Biphenylene, and Related Compounds. Chem. Rev. 1992, 92, 1685–1707. DOI: 10.1021/cr00016a001
  3. Blanco, V. L.; Helson, H. E.; Hirthammer, M.; Mestdagh, H.; Vollhardt, K. P. C. 2,3,9,10-Tetrakis(trimethylsilyl)[5]phenylene. Synthesis via Regiospecific Cobalt-Catalyzed Cocyclization of 1,6-Bis(triisopropylsilyl)-1,3,5-hexatriyne. Angew. Chem., Int. Ed. 1987, 26, 1246–1247. DOI: 10.1002/anie.198712461
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 分子間相互作用の協同効果を利用した低対称分子集合体の創出
  2. 【解ければ化学者】ビタミン C はどれ?
  3. Rice cooker
  4. エステルからエーテルへの水素化脱酸素反応を促進する高活性固体触媒…
  5. 今年の光学活性化合物シンポジウム
  6. PEG化合物を簡単に精製したい?それなら塩化マグネシウム!
  7. iPhone/iPodTouchで使える化学アプリケーション
  8. 化学系学生のための就活2019

注目情報

ピックアップ記事

  1. 人が集まるポスター発表を考える
  2. 添加剤でスイッチするアニリンの位置選択的C-Hアルキル化
  3. 化学者のためのWordマクロ -Supporting Informationの作成作業効率化-
  4. マテリアルズ・インフォマティクスの推進成功事例 -なぜあの企業は最短でMI推進を成功させたのか?-
  5. 分析化学科
  6. マーヴィン・カルザース Marvin H. Caruthers
  7. 藤原・守谷反応 Fujiwara-Moritani Reaction
  8. 第八回 ユニークな触媒で鏡像体をつくり分けるー林民生教授
  9. 第22回 化学の複雑な世界の源を求めてーLee Cronin教授
  10. 三菱化学の合弁計画、中国政府が認可・330億円投資へ

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年11月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

最新記事

有機合成化学協会誌2024年12月号:パラジウム-ヒドロキシ基含有ホスフィン触媒・元素多様化・縮環型天然物・求電子的シアノ化・オリゴペプチド合成

有機合成化学協会が発行する有機合成化学協会誌、2024年12月号がオンライン公開されています。…

「MI×データ科学」コース ~データ科学・AI・量子技術を利用した材料研究の新潮流~

 開講期間 2025年1月8日(水)、9日(木)、15日(水)、16日(木) 計4日間申込みはこ…

余裕でドラフトに収まるビュッヒ史上最小 ロータリーエバポレーターR-80シリーズ

高性能のロータリーエバポレーターで、効率良く研究を進めたい。けれど設置スペースに限りがあり購入を諦め…

有機ホウ素化合物の「安定性」と「反応性」を両立した新しい鈴木–宮浦クロスカップリング反応の開発

第 635 回のスポットライトリサーチは、広島大学大学院・先進理工系科学研究科 博士…

植物繊維を叩いてアンモニアをつくろう ~メカノケミカル窒素固定新合成法~

Tshozoです。今回また興味深い、農業や資源問題の解決の突破口になり得る窒素固定方法がNatu…

自己実現を模索した50代のキャリア選択。「やりたいこと」が年収を上回った瞬間

50歳前後は、会社員にとってキャリアの大きな節目となります。定年までの道筋を見据えて、現職に留まるべ…

イグノーベル賞2024振り返り

ノーベル賞も発表されており、イグノーベル賞の紹介は今更かもしれませんが紹介記事を作成しました。 …

亜鉛–ヒドリド種を持つ金属–有機構造体による高温での二酸化炭素回収

亜鉛–ヒドリド部位を持つ金属–有機構造体 (metal–organic frameworks; MO…

求人は増えているのになぜ?「転職先が決まらない人」に共通する行動パターンとは?

転職市場が活発に動いている中でも、なかなか転職先が決まらない人がいるのはなぜでしょう…

三脚型トリプチセン超分子足場を用いて一重項分裂を促進する配置へとペンタセンクロモフォアを集合化させることに成功

第634回のスポットライトリサーチは、 東京科学大学 物質理工学院(福島研究室)博士課程後期3年の福…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP