ハロチオフェンからのハロゲン移動反応を用いるN–ヘテロアレーンのC–Hエーテル化が開発された。穏和な反応条件で、広範なアジンやアゾールを位置選択的にC–Hエーテル化できる。
N-ヘテロアレーンのC–Hエーテル化
ヘテロアリールエーテルは医農薬品において重要な骨格である。遷移金属触媒によるハロゲン化ヘテロアリールのエーテル化は信頼性の高い合成法として頻用される。
近年では、最も理想的な合成法とされる芳香環C–H結合のエーテル化も報告されたが[1]、アジンやアゾールなどのN-ヘテロアレーンへ適用した例は少ない。
例えばShiらは、銅触媒を用いて配向基をもつN-ヘテロアレーンのC–Hエーテル化を達成した(図1A)[2]。しかし、より単純なN-ヘテロアレーンのC–Hエーテル化は挑戦的な課題であり、現状、N-ヘテロアレーンの事前官能基化を要する手法が大半である[3]。最近の例としては、McNallyらが開発したアジンのホスホニウム化を経由するN-ヘテロアリールエーテル合成法が挙げられる(図1B)[4]。このように、単純なN-ヘテロアレーンを直接C–Hエーテル化できる手法はなく、新たなN-ヘテロアレーンの活性化戦略が求められる。
一方、1951年Nordらは強塩基存在下、2-ブロモチオフェン間でハロゲン移動が起こり、テトラブロモ置換体が生成することを見いだした(図1C)[5]。コロラド州立大学のBandar助教授らは、このハロゲン移動反応がN-ヘテロアレーンとハロチオフェン間で起これば、系中でN-ヘテロアレーンをハロゲン化でき、続くアルコールとのSNArが一挙に進行すると考えた(図1D)。検討の結果、著者らはハロチオフェンのハロゲン移動反応を用いるN-ヘテロアレーンの新規C–Hエーテル化の開発に成功した。
“Nucleophilic C–H Etherification of Heteroarenes Enabled by Base-Catalyzed Halogen Transfer”
Puleo, T. R.; Klaus, D. R.; Bandar, J. S. J. Am. Chem. Soc. 2021, 143, 12480–12486.
DOI: 10.1021/jacs.1c06481
論文著者の紹介
研究者:Jeffrey S. Bandar
研究者の経歴:
2009 BSc., Saint. John’s University, USA (Associate Prof. Thomas N. Jones)
2014 Ph.D., Columbia University, USA (Prof. Tristan H. Lambert)
2014–2017 Postdoc, Massachusetts Institute of Technology, USA (Prof. Stephen L. Buchwald)
2017 Assistant Professor, Colorado State University, USA
研究内容:強塩基を用いた新規触媒反応の開発
論文の概要
著者らはカリウムtert-ブトキシド存在下、N-ヘテロアレーン1にアルコール2とハロゲン移動試薬としてハロチオフェン3を反応させると、N-ヘテロアリールエーテル4が収率よく得られることを見いだした(図2A)。
チアゾールやイミダゾールなどの1,3-アゾールでは、2,5-ジブロモチオフェン(3a)を用いると、2位選択的なC–Hエーテル化が進行した(4a, 4b)。
また、1,3-アゾール類よりも酸性度が低いアジンに対しては、3aよりハロゲン移動が起こりやすい2-ヨードチオフェン(3b)を用いることで、4位選択的なエーテル化が進行した(4c, 4d)。フェニルスルホニル基を有するアジンおよびイミダゾ[1,2-b]ピリダジンでは2,3-ジヨードベンゾチオフェン(3c)を用いると、良好な収率で4位エーテル化体が得られた(4e, 4f)。
続いて、著者らはポリアジンの位置選択的なC–Hエーテル化を試みた(図2B)。ビピリジン5に3cを用いて反応させたところ、トリフルオロメチル基を有するピリジン環を4位選択的にエーテル化できた(6)。
クロロ-2,3’-ビピリジンでも同様に、クロロピリジンの4位でエーテル化が進行した(7)。他にも、キノリニル基をもつイミダゾ[1,2-b]ピリダジンでは8位が(8)、ピリダジンと2つのピリジンをもつ分子では、ピリダジン環の4位がエーテル化された(9)。
さらに、3b存在下ブロモピリジン10をL-プロリノール(11)と反応させると、4位選択的なC–Hエーテル化に続く分子内SNAr反応が進行し、モルホリン縮環ピリジン12が良好な収率で得られた。
以上、カリウムtert-ブトキシド存在下、ハロチオフェンをハロゲン移動試薬に用いたN-ヘテロアレーンの位置選択的なC–Hエーテル化反応が開発された。今後、ハロゲン移動試薬を利用したエーテル化以外の官能基化の開発が期待できる。
参考文献
- (a) Liu, B.; Shi, B.-F.Transition-Metal-Catalyzed Etherification of Unactivated C–H Bonds. Tetrahedron Lett. 2015, 56, 15–22. DOI: 1016/j.tetlet.2014.11.039 (b) Zheng, Q.; Chen, J.; Rao, G.-W. Recent Advances in C–O Bond Construction via C–H Activation. Russ. J. Org. Chem. 2019, 55, 569–586. DOI: 10.1134/S1070428019040249
- Yin, X.-S.; Li, Y.-C.; Yuan, J.; Gu, W.-J.; Shi, B.-F. Copper (II)-Catalyzed Methoxylation of Unactivated (Hetero)Aryl C–H Bonds using a Removable Bidentate Auxiliary. Org. Chem. Front. 2015, 2, 119–123. DOI: 1039/c4qo00276h
- (a) Kutasevich, A. V.; Perevalov, V. P.; Mityanov, V. S. Recent Progress in Non-Catalytic C−H Functionalization of Heterocyclic N-Oxides. Eur. J. Org.Chem. 2021, 3, 357– DOI: 10.1002/ejoc.202001115 (b) Baykov, S. V.; Boyarskiy, V. P. Metal-Free Functionalization of Azine N-Oxides with Electrophilic Reagents. Chem. Heterocycl. Compd. 2020, 56, 814−823. DOI: 10.1007/s10593-020-02737-x (c) Lian, Y.; Coffey, S. B.; Li, Q.; Londregan, A. T. Preparation of Heteroaryl Ethers from Azine N-Oxides and Alcohols. Org. Lett. 2016, 18, 1362−1365. DOI: 10.1021/acs.orglett.6b00295
- Hilton, M. C.; Dolewski, R. D.; McNally, A. Selective Functionalization of Pyridines via Heterocyclic Phosphonium Salts. J. Am. Chem. Soc. 2016, 138, 13806–13809. DOI: 10.1021/jacs.6b08662
- Vaitiekunas, A.; Nord, F. F. Tetrabromothiophene from 2-Bromothiophene by means of Sodium Acetylide in Liquid Ammonia. Nature 1951, 168, 875–876. DOI: 1038/168875a0