[スポンサーリンク]

一般的な話題

化学者のためのエレクトロニクス講座~電解銅めっき編~

[スポンサーリンク]

このシリーズでは、化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLEDなど、エレクトロニクス産業で活躍する化学や材料のトピックスを詳しく掘り下げて紹介します。今回は半導体配線やプリント基板の根幹を支える電解銅めっきを特集します。

電解銅めっき(画像:Wikipedia

銅は銀についで抵抗率が低く、比較的安価でそれなりに耐食性もある(表面は容易に酸化されますが)ことから、配線材料として広く用いられています。半導体向けには当初アルミニウムが用いられてきましたが、より電気抵抗が低く、エレクトロマイグレーション(EMを起こしにくい点、銀や金に比べて安価である点などから、現在では銅にとってかわられています。

plating

モバイル端末に欠かせない銅めっき(画像:Flickr

しかしながら、銅はAlとは異なり、プラズマエッチングによるパターニングが難しく、これが実用化の障壁となっていました。近年では特に半導体配線において極端な微細化が要求されており、めっきすべき部分のみを確実にめっきするための技術が必要とされています。

銅ダマシンめっき

その打開のために発展したのが、ダマシンと呼ばれるめっき技術です。

ダマシンとはまたの名を象嵌といい、溝や穴などの微細な凹部を埋めるようにめっきする手法です。シリアの首都、ダマスカスにおける工芸品の製造プロセスによく似ていることにちなんで命名されたといわれます。

とはいえ、銅を用いた配線技術の確立には並々ならぬ困難がありました。

めっきによる金属の析出は一般に、反応種の金属イオンが拡散で到達しやすい電極の凸部ほど起こりやすいものです。極端な例としては、樹枝状に析出した金属樹が挙げられます。

銅樹のSEM画像(画像:Wikipedia

しかし凹部に金属を埋め込むダマシンにおいては逆に、凹部ほど速く析出させることが必要です。この析出の制御を可能とするのが、めっき浴に微量加えられる添加剤です。基本的には微細な空孔に入り込みやすい低分子の添加剤が析出促進を、入りにくい大きな分子が阻害を担うことによって凹凸を埋めるように析出が進行します。

銅めっきの添加剤

現在広く用いれている銅めっき浴のうち最も代表的なものは硫酸銅(II)をベースとする硫酸銅浴ですが、これに添加されているのは主に以下の3種類です。

① ノニオン系界面活性剤:Cl存在下で中間体のCu+を捕捉して電極上に単分子吸着し、析出を阻害する。

ex) PEGなど

光沢剤:結晶核の成長点に吸着することで大きな結晶が成長するのを阻害し、新たな結晶核の発生を促進する。さらに、めっき皮膜中に取り込まれずに残存することで、表面積が漸減する凹部に集中して水素の吸着を阻害することで、結果的に凹部での析出を促進する。

ex) bis (3-sulfopropyl)disulfidedisodium(SPSなどの有機硫黄化合物

③ レベラー:電極への吸着が拡散律速であるため凸部に選択的に吸着し、析出を阻害する。

ex) ヤヌスグリーンB (JGB)など

このほか、ピロリン酸銅(II)をベースとするピロリン酸銅浴も均一電着性や残留応力特性に優れることから近年普及しています。この浴では②のSPSの代わりにジメルカプトチアジアゾール(DMTDなどが供されています。

ほかにも、古典的には銅のシアン錯体を用いたシアン化銅浴などもあり、ストライクめっきなどに用いられています。

最近の動向

微細化の進展に伴い銅濃度の低減による析出精度の向上が模索されていますが、低濃度条件においてはめっき皮膜中にボイド(穴、間隙)が形成されやすいことが知られ、これが信頼性を維持する上で課題となっています。ボイドは皮膜に共析したPEGが原因となっていることも多く、その克服が急がれています。

また、半導体配線は絶縁体のSiO2膜などの上に形成することから、全工程を無電解めっきのみで完結させることができれば最も合理的です。このような背景から近年では無電解銅めっきへの傾斜が進んでおり、電解銅めっきの役割は依然と比較すると小さなものとなりました。

しかし依然として電解銅めっき浴は組成が単純でコストが低く、めっき液の長期保管に伴う安定性が無電解めっき浴と比較して優れていることから、今後も工業上重要な技術であり続けるものと考えられます。

将来的なパラダイムシフトによって半導体内部の配線材料が銅からほかの金属へ移っていく可能性も刻々と高まってきてはいますが、それでもプリント基板用途では他の追随を許しておらず、完全に代替されるには至らないのではないでしょうか。

PCB

銅めっきをベースとして製造された基板(画像:Pixabay)

・・・

長くなりましたので今回はこのあたりで区切ります。次回は銅配線を保護する電解パラジウムめっきを特集しますのでお楽しみに!

関連書籍

[amazonjs asin=”4526053732″ locale=”JP” title=”次世代めっき技術―表面技術におけるプロセス・イノベーション”] [amazonjs asin=”4526045225″ locale=”JP” title=”表面処理工学―基礎と応用”] [amazonjs asin=”B000J740MS” locale=”JP” title=”めっき技術ガイドブック (1983年)”]
gaming voltammetry

berg

投稿者の記事一覧

化学メーカー勤務。学生時代は有機をかじってました⌬
電気化学、表面処理、エレクトロニクスなど、勉強しながら執筆していく予定です

関連記事

  1. 【経験者に聞く】マテリアルズ・インフォマティクスの事業開発キャリ…
  2. 標準物質ーChemical Times特集より
  3. シス優先的プリンス反応でsemisynthesis!abeo-ス…
  4. 超原子結晶!TCNE!インターカレーション!!!
  5. カンブリア爆発の謎に新展開
  6. ポリ塩化ビニルがセンター試験に出題されたので
  7. 酵素の分子個性のダイバーシティは酵素進化のバロメーターとなる
  8. 【PR】 Chem-Stationで記事を書いてみませんか?【ス…

注目情報

ピックアップ記事

  1. N-オキシドの合成 Synthesis of N-oxide
  2. 交差アルドール反応 Cross Aldol Reaction
  3. 被引用回数の多い科学論文top100
  4. 庄野酸化 Shono Oxidation
  5. Impact Factorかh-indexか、それとも・・・
  6. 有機化学系ラボで役に立つ定番グッズ?100均から簡単DIYまで
  7. 化学企業のグローバル・トップ50が発表【2018年版】
  8. ロバート・フィップス Robert J. Phipps
  9. 太陽ホールディングスってどんな会社?
  10. Mukaiyama Award―受賞者一覧

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年12月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

日本化学連合シンポジウム 「海」- 化学はどこに向かうのか –

日本化学連合では、継続性のあるシリーズ型のシンポジウムの開催を企画していくことに…

【スポットライトリサーチ】汎用金属粉を使ってアンモニアが合成できたはなし

Tshozoです。 今回はおなじみ、東京大学大学院 西林研究室からの研究成果紹介(第652回スポ…

第11回 野依フォーラム若手育成塾

野依フォーラム若手育成塾について野依フォーラム若手育成塾では、国際企業に通用するリーダー…

第12回慶應有機化学若手シンポジウム

概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大学理工学部・…

新たな有用活性天然物はどのように見つけてくるのか~新規抗真菌剤mandimycinの発見~

こんにちは!熊葛です.天然物は複雑な構造と有用な活性を有することから多くの化学者を魅了し,創薬に貢献…

創薬懇話会2025 in 大津

日時2025年6月19日(木)~6月20日(金)宿泊型セミナー会場ホテル…

理研の研究者が考える未来のバイオ技術とは?

bergです。昨今、環境問題や資源問題の関心の高まりから人工酵素や微生物を利用した化学合成やバイオテ…

水を含み湿度に応答するラメラ構造ポリマー材料の開発

第651回のスポットライトリサーチは、京都大学大学院工学研究科(大内研究室)の堀池優貴 さんにお願い…

第57回有機金属若手の会 夏の学校

案内:今年度も、有機金属若手の会夏の学校を2泊3日の合宿形式で開催します。有機金…

高用量ビタミンB12がALSに治療効果を発揮する。しかし流通問題も。

2024年11月20日、エーザイ株式会社は、筋萎縮性側索硬化症用剤「ロゼバラミン…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー