[スポンサーリンク]

一般的な話題

化学者のためのエレクトロニクス講座~電解ニッケルめっき編~

[スポンサーリンク]

この化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLEDなど、エレクトロニクス産業で活躍する化学や材料のトピックスを詳しく掘り下げて紹介します。

今回は電解ニッケルめっきを取り上げます。

ニッケルは卑金属でありながら比較的耐食性に優れており、拡散しにくいという利点もあります。そのため、電子機器における銅の配線層と貴金属の間のバリア層として広く用いられています。そのほか、磁性材料や装飾用途もあります。近年では無電解めっきでの加工も主流となりつつありますが、ここでは従来の電解めっきを見ていきます。

plating

モバイル端末に欠かせないめっき(画像:Flickr

ニッケルめっき浴

代表的なニッケルめっき浴にはO.P.Wattsによって開発されたワット浴と、スルファミン酸ニッケルを主体とするスルファミン酸浴があり、これらと別に、下地層形成に用いられるストライク浴があります。

ワット浴はもっとも古典的なニッケルめっき浴です。その主成分は硫酸ニッケルで、これにニッケルアノードの溶解を促進する塩化ニッケル、カソードでのHERを抑制するホウ酸のほか、必要に応じて光沢剤が添加されています。

一方のスルファミン酸浴は主成分のスルファミン酸ニッケルのほかにホウ酸と必要に応じた光沢剤が添加されています。得られる被膜の残留応力が少なく、均一に析出しやすいことが利点です。

ニッケルストライク浴は、塩酸に少量の塩化ニッケルを溶解した希薄な浴で、HERが優先してニッケルの析出効率を低下させ、粗雑な被膜を作ることを目的としています。

光沢剤の原理

ここで、光沢剤は平滑な表面を与えることでめっき被膜に光沢をもたらす作用のある試薬で、皮膜の金属結晶を微細化する一次光沢剤と、さらに細かい凹部を埋める(レベリングする)二次光沢剤に大別されます。光沢剤を加えない浴を無光沢めっき、一次光沢剤のみの浴を半光沢めっき、一次光沢剤と二次光沢剤を加えた浴を光沢めっきと呼びます。

また、一次光沢剤、二次光沢剤と加えていくごとにめっき被膜は平滑となり、光沢が増しますが、皮膜の硬度が増大することで割れクラックなどの不良も増加します。特にスルファミン酸浴ではもとからやや光沢気味に仕上がることから注意が必要とされます。

一次光沢剤にはベンゼンスルホン酸などの芳香族スルホン酸芳香族スルホン酸アミドサッカリンなどの芳香族スルホン酸イミドが用いられています。サッカリンを例にとってみると、ニッケル表面に吸着して還元され、ニッケル被膜中に硫黄を受け渡して自身はベンズアミドとなります。

C6H4CONHSO2 + 6H+ + 6e →C6H5CONH2 + NiS + 2H2O

一方、二次光沢剤にはホルムアルデヒド(ホルマリン)などのアルデヒド、アリルスルホン酸などのアリル化合物や、2-ブチン-1,4-ジオールなどのアセチレン誘導体が用いられています。代表的な2-ブチン-1,4-ジオールはカソード上で還元されてブタンジオールとなりますが、この反応は極めて速く、拡散律速となるためにめっき皮膜は平滑になります。

HOCH2C≡CCH2OH + 4H+ + 8e →HO(CH2)4OH + 2H2O

なお、一次光沢剤中の硫黄原子はめっき被膜に共析し、その電位を卑に傾けるため腐食しやすくなる欠点もあります。

用途と今後の展望

ニッケルめっきはバリア層としての用途が極めて重要ですが、ワット浴をはじめ従来のめっき液ではピンホールなどの不良が生じやすいという本質的な問題もありました。ピンホールがあるとそこから銅原子は拡散して表面で酸化されてしまうため、腐食などの不良につながります。しかし、近年の微細化要求の高まりと金属価格の高騰はめっき膜厚の低減を求めており、ますますこれらの課題が顕在化することとなります。めっき不良を起こさずに膜厚を低減するための添加剤研究は日夜続けられており、近年では低濃度のニッケル浴を用いた省資源化・省エネルギー化も進展しています。今後の進展に期待が高まりますね。

Ni価格は不安定です(画像:Wikipedia

関連書籍

[amazonjs asin=”B000J740MS” locale=”JP” title=”めっき技術ガイドブック (1983年)”] [amazonjs asin=”4526053732″ locale=”JP” title=”次世代めっき技術―表面技術におけるプロセス・イノベーション”]
gaming voltammetry

berg

投稿者の記事一覧

化学メーカー勤務。学生時代は有機をかじってました⌬
電気化学、表面処理、エレクトロニクスなど、勉強しながら執筆していく予定です

関連記事

  1. 第27回ケムステVシンポ『有機光反応の化学』を開催します!
  2. “秒”で分析 をあたりまえに―利便性が高まるSFC
  3. 生きたカタツムリで発電
  4. 重医薬品(重水素化医薬品、heavy drug)
  5. 第54回天然有機化合物討論会
  6. 空気下、室温で実施可能な超高速メカノケミカルバーチ還元反応の開発…
  7. 有機反応を俯瞰する ー芳香族求電子置換反応 その 2
  8. フッ素のチカラで光学分割!?〜配向基はじめました〜

注目情報

ピックアップ記事

  1. 有機合成化学協会誌2020年9月号:キラルナフタレン多量体・PNNP四座配位子・π共役系有機分子・フェンタニル混入ヘロイン・プロオリゴ型核酸医薬
  2. 湿度変化で発電する
  3. 企業の研究開発のつらさ
  4. 常温・常圧で二酸化炭素から多孔性材料をつくる
  5. オルガネラ選択的な薬物送達法:②小胞体・ゴルジ体・エンドソーム・リソソームへの送達
  6. スティーブ・ケント Stephen B. H. Kent
  7. Happy Friday?
  8. 金属錯体化学を使って神経伝達物質受容体を選択的に活性化する
  9. アーウィン・ローズ Irwin A. Rose
  10. ケムステも出ます!サイエンスアゴラ2013

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年11月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

最新記事

2024年ノーベル化学賞ケムステ予想当選者発表!

大変長らくお待たせしました! 2024年ノーベル化学賞予想の結果発表です!2…

“試薬の安全な取り扱い”講習動画 のご紹介

日常の試験・研究活動でご使用いただいている試薬は、取り扱い方を誤ると重大な事故や被害を引き起こす原因…

ヤーン·テラー効果 Jahn–Teller effects

縮退した電子状態にある非線形の分子は通常不安定で、分子の対称性を落とすことで縮退を解いた構造が安定で…

鉄、助けてっ(Fe)!アルデヒドのエナンチオ選択的α-アミド化

鉄とキラルなエナミンの協働触媒を用いたアルデヒドのエナンチオ選択的α-アミド化が開発された。可視光照…

4種のエステルが密集したテルペノイド:ユーフォルビアロイドAの世界初の全合成

第637回のスポットライトリサーチは、東京大学大学院薬学系研究科・天然物合成化学教室(井上将行教授主…

そこのB2N3、不対電子いらない?

ヘテロ原子のみから成る環(完全ヘテロ原子環)のπ非局在型ラジカル種の合成が達成された。ジボラトリアゾ…

経済産業省ってどんなところ? ~製造産業局・素材産業課・革新素材室における研究開発専門職について~

我が国の化学産業を維持・発展させていくためには、様々なルール作りや投資配分を行政レベルから考え、実施…

第51回ケムステVシンポ「光化学最前線2025」を開催します!

こんにちは、Spectol21です! 年末ですが、来年2025年二発目のケムステVシンポ、その名…

ケムステV年末ライブ2024を開催します!

2024年も残り一週間を切りました! 年末といえば、そう、ケムステV年末ライブ2024!! …

世界初の金属反応剤の単離!高いE選択性を示すWeinrebアミド型Horner–Wadsworth–Emmons反応の開発

第636回のスポットライトリサーチは、東京理科大学 理学部第一部(椎名研究室)の村田貴嗣 助教と博士…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP