[スポンサーリンク]

一般的な話題

学術変革領域研究(A) 「デジタル有機合成」発足とキックオフシンポジウムのお知らせ

[スポンサーリンク]

 

令和3年度より

学術変革領域研究(A)~デジタル化による高度精密有機合成の新展開~(略称:デジタル有機合成)

が発足しました!

学術変革(B)の糖化学ノックインと同様に、本化学ポータルサイトChem-Stationと、学術広報パッケージ契約を結びました。本アカウントを通じて、イベント情報や研究成果などをケムステで紹介していきたいと思います。

先日公開したばかりの領域HPや本領域のTwitterなどをご覧いただけると幸いです。

領域が目指すこと

有機合成の多様性に対応した独自のデジタル化プラットフォームを構築する

となります。以下背景から簡単に説明したいと思います。

日本の基幹産業の一翼を担う有機合成化学は、入手容易かつ安価な有機原料から、医薬、農薬、機能性材料などの超付加価値を有する高次複雑系分子を創成する、まさに現代の錬金術と言われるモノづくりを支える学術基盤であり、数多くのノーベル賞受賞が示すように、日本が世界を牽引してきました。

現在、有機合成化学の分野にもデジタル化という大きな変革の波が押し寄せている。日本の有機合成化学が世界をリードし続けるためには、有機合成に破壊的イノベーションを起こす、デジタル有機合成(実験科学と情報科学の異分野融合)の基盤を世界に先んじて構築し、他国の追随を許さない地位を築くことが重要かつ急務となっています。

本領域では、有機合成の多様性に対応した独自のデジタル化プラットフォームを構築するため、

①反応条件最適化、

②合成経路探索、

③高次複雑系分子設計

の3つの自動化システムを開発し、革新的な基礎反応の発掘や開発効率の超加速化(>10倍以上)を実証します。また、

④バッチ反応からフロー反応への変換法の開発

、そして

⑤自律的な条件最適化ユニットを組み込んだ自動合成システムを構築

し、多段階分子変換反応に展開することで、本プラットフォームの産業的実用性も示します。

本研究領域がデジタル有機合成の核となり、産学官が一体となった一大ムーブメントを創り出すことで、日本のモノづくり力向上と化学産業の継続的発展の土台づくりへの貢献を目指します。

領域の構成

領域代表者は、以下のビジョンで、本領域研究を強力に運営・推進し、本研究領域をわが国において確固たるものにし、他の追随を許さない地位を5年の研究期間内に築くために、以下の3班体制で研究を推進します。

A01班(AI支援による反応制御の深化)

A02班(AI支援による合成手法の深化)

A03班(有機合成を支援するAI 手法の深化)

計画班と公募班合わせて50以上の研究グループが加わった研究体制は、有機化学の多様性と機械学習に必要なデータ量をカバーするために必要だと考えており、将来的にこの体制で「革新反応と革新分子の創出を超加速化」を目指します。公募情報も近日HPに公開する予定なのでぜひ御覧ください。

キックオフシンポジウムにご参加を!

有機合成(実験科学)とデータサイエンス(情報科学)の異分野融合によって、有機合成に破壊的イノベーションを起こすことを目的とする、学術変革領域研究(A)「デジタル有機合成」が2021年9月に発足しました。
本キックオフミーティングでは、まず、本領域研究の概要を説明し、その後、A01班(AI支援による反応制御の深化)、A02班(AI支援による合成手法の深化)、A03班(有機合成を支援するAI 手法の深化)それぞれが取り組む研究内容、そして公募班にどのような研究を望むかについて紹介したいと思います。
また最後に、提言「化学・情報科の融合による新化学創成に向けて」を取りまとめた日本学術会議化学委員会化学企画分科会の副委員長であり、本領域研究の総括班評価者でもある茶谷直人先生にご講演いただきます。
本領域研究に興味を持たれている多くの方々の参加をお待ちしています。

「デジタル有機合成」領域代表 大嶋 孝志

日時:2021年12月6日(月)13:00-15:30
場所:オンライン開催(Zoomウェビナー)

13:00-13:10 領域代表挨拶、領域説明 大嶋孝志(九大院薬)
13:10-13:30 A01班説明「反応制御の深化」 大嶋孝志(九大院薬)
13:40-14:00 A02班説明「合成手法の深化」 菅誠治(岡山大院自然)
14:00-14:20 A03班説明「AI手法の深化」 宮尾知幸(奈良先端大・DSC)
14:20-14:35 質疑・応答
14:45-15:30 招待講演「結合活性化」 茶谷直人(阪大院工)

参加を希望される方は、以下のリンク(Googleフォーム)から11月30日(火)までにお申込ください。

参加登録はこちら!

後日、参加用のURLをご登録いただいたメールアドレスにお送りします。

関連リンク

関連記事

  1. マテリアルズ・インフォマティクスに欠かせないデータ整理の進め方と…
  2. ルーブ・ゴールドバーグ反応 その1
  3. 地域の光る化学企業たち-1
  4. 知られざる有機合成のレアテク集
  5. 世界が終わる日までビスマス
  6. ルーブ・ゴールドバーグ反応 その2
  7. Rice cooker
  8. C–S結合を切って芳香族を非芳香族へ

注目情報

ピックアップ記事

  1. ゲオスミン(geosmin)
  2. 有機触媒 / Organocatalyst
  3. 日本のお家芸、糖転移酵素を触媒とするための簡便糖ドナー合成法
  4. 2002年ノーベル化学賞『生体高分子の画期的分析手法の開発』
  5. バルビエ・ウィーランド分解 Barbier-Wieland Degradation
  6. 2009年6月人気化学書籍ランキング
  7. 【速報】2011年ノーベル化学賞は「準結晶の発見」に!
  8. 電子実験ノートSignals Notebookを紹介します ②
  9. 黒田 一幸 Kazuyuki Kuroda
  10. 水素化ビス(2-メトキシエトキシ)アルミニウムナトリウム Red-Al

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年11月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

最新記事

MEDCHEM NEWS 34-1 号「創薬を支える計測・検出技術の最前線」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

医薬品設計における三次元性指標(Fsp³)の再評価

近年、医薬品開発において候補分子の三次元構造が注目されてきました。特に、2009年に発表された論文「…

AI分子生成の導入と基本手法の紹介

本記事では、AIや情報技術を用いた分子生成技術の有機分子設計における有用性や代表的手法について解説し…

第53回ケムステVシンポ「化学×イノベーション -女性研究者が拓く未来-」を開催します!

第53回ケムステVシンポの会告です!今回のVシンポは、若手女性研究者のコミュニティと起業支援…

Nature誌が発表!!2025年注目の7つの技術!!

こんにちは,熊葛です.毎年この時期にはNature誌で,その年注目の7つの技術について取り上げられま…

塩野義製薬:COVID-19治療薬”Ensitrelvir”の超特急製造開発秘話

新型コロナウイルス感染症は2023年5月に5類移行となり、昨年はこれまでの生活が…

コバルト触媒による多様な低分子骨格の構築を実現 –医薬品合成などへの応用に期待–

第 642回のスポットライトリサーチは、武蔵野大学薬学部薬化学研究室・講師の 重…

ヘム鉄を配位するシステイン残基を持たないシトクロムP450!?中には21番目のアミノ酸として知られるセレノシステインへと変異されているP450も発見!

こんにちは,熊葛です.今回は,一般的なP450で保存されているヘム鉄を配位するシステイン残基に,異な…

有機化学とタンパク質工学の知恵を駆使して、カリウムイオンが細胞内で赤く煌めくようにする

第 641 回のスポットライトリサーチは、東京大学大学院理学系研究科化学専攻 生…

CO2 の排出はどのように削減できるか?【その1: CO2 の排出源について】

大気中の二酸化炭素を減らす取り組みとして、二酸化炭素回収·貯留 (CCS; Carbon dioxi…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー