[スポンサーリンク]

化学者のつぶやき

こんなのアリ!?ギ酸でヒドロカルボキシル化

[スポンサーリンク]

可視光レドックス触媒によるギ酸を炭素源としたヒドロカルボキシル化が開発された。チオール触媒を介したラジカル連鎖機構が支持されており、低触媒量で穏和に反応が進行する。

ヒドロカルボキシル化の進展と多様化

ヒドロカルボキシル化はアルケンを直截、カルボン酸へ誘導する有用な反応である。古典的には遷移金属触媒存在下、高温高圧条件と有毒な一酸化炭素を必要とするが、近年では室温・常圧で進行し、二酸化炭素を炭素源とする反応が開発されている(図 1A)[1]。2020年にYuらはメタルフリーかつ穏和な条件で進行する、可視光駆動型ヒドロカルボキシル化を初めて報告した(図 1B 上)[2]

しかし、化学量論量以上の塩基や添加剤が必要であった。一方で、気体分子の代わりにギ酸を炭素源として利用できるヒドロカルボキシル化も開発されているものの、報告例は少ない。
ごく最近、Juiらはギ酸ナトリウムから生成したCO2ラジカルアニオンを利用した、種々の基質に対する還元反応を開発した[4]。その過程で、彼らは一部の還元されにくいアルケンを基質とすると、CO2ラジカルアニオンが付加しカルボン酸を与えることを見いだした(図 1C)。この報告の直後、本論文著者のWickensらも有機光触媒、チオール、ギ酸塩を用いる類似の触媒系を用いて、ギ酸を炭素源としたアルケンのヒドロカルボキシル化に成功した。本手法は50 mmolスケールでの合成が可能であり、空気下、含水条件でも滞りなく反応が進行する。

図1. (A) 従来のヒドロカルボキシル化 (B) 可視光駆動型のヒドロカルボキシル化 (C) ギ酸塩を用いたヒドロカルボキシル化

 

“Photoinduced Hydrocarboxylation via Thiol-Catalyzed Delivery of Formate Across Activated Alkenes”
Alektiar, S.; Wickens, Z. J. Am. Chem. Soc.2021, 143, 13022–13028.
DOI: 10.1021/jacs.1c07562

論文著者の紹介

研究者:Zachary K. Wickens
研究者の経歴:
2006–2010                  B.A., Macalester College, USA
2010–2015                  Ph.D., California Institute of Technology, USA (Prof. Robert H. Grubbs)
2015–2018                  Postdoc, Harvard University, USA (Prof. Eric N. Jacobsen)
2018–                             Assistant Professor, University of Wisconsin–Madison, USA
研究内容:電気化学、光化学

論文の概要

DMSO中、4-DPAIPN及びT1触媒存在下、アルケン1とギ酸カリウム塩(2)に対して青色光を照射することで対応するカルボン酸3が得られる(図 2A)。基質適用範囲を調査したところ、スチレン(1a)は収率80%で3aを与え、50 mmolスケールでの合成や含水条件にも対応した。本反応はクロロベンゼン(1b)、ピリジニウム(1c)をもつスチレン誘導体のほか、α,β-不飽和エステル(1d)に適用可能であった。電子状態の異なるオレフィンをもつ場合は、電子不足なオレフィンが選択的にヒドロカルボキシル化を受けた(1e)。また、13Cを含むギ酸塩を用いることで同位体標識された生物活性物質(3f, 3g)も合成できた。
次に筆者らは1aを用いて重水素化実験を試みた(図 2B)。重水素化されたギ酸ナトリウム(DCOONa)を用いると、生成した3aの重水素化率は80%であった(Entry 1)。溶媒をDMSO-d6をとすると重水素体を与えない一方、10当量の重水(D2O)を加えると3aの重水素化率は92%となった(Entries 2 and 3)。また、DCOONaを用いてH2Oを添加すると重水素化した3aは得られなかった(Entry 4)。これらの結果から、著者らは(i)、(ii)いずれかを開始反応とする次の反応機構を提唱した(図2C)。開始反応(i)では、青色光により励起された4-DPAIPN2を一電子酸化し、不均化によってCO2ラジカルアニオン2’が生成する。2’1に付加しラジカルアニオン中間体IM1を与える。このIM1T1との水素移動反応(Hydrogen Atom Transfer: HAT)によってカルボキシラートとなり、プロトン化されて3となる。HATによって生成したチイルラジカルT1’2から水素原子を引き抜く過程で、2’は再び生成する。開始反応(ii)では、T14-DPAIPNによる一電子酸化、続く脱プロトン化によってチイルラジカルT1’となる。その後、開始反応(i)と同一の触媒サイクルで反応する。

図2. (A) 基質適用範囲 (B) 重水素化実験 (C) 推定反応機構

 

以上、取り扱い容易なギ酸塩を用いた穏和なヒドロカルボキシル化が開発された。本反応を足掛かりに、CO2ラジカルアニオンを炭素源とする炭素–炭素結合形成の更なる発展が期待される。

参考文献

  1. Kalck, P.; Urrutigoïty, M.; Dechy-Cabaret, O. Hydroxy- and Alkoxycarbonylations of Alkenes and Alkynes. In Catalytic Carbonylation Reactions; Beller, M., Ed.; Topics in Organometallic Chemistry, Vol. 18; Springer: Berlin, Germany, 2006; pp 97–
  2. Huang, H.; Ye, J.-H.; Zhu, L.; Ran, C.-K.; Miao, M.; Wang, W.; Chen, H.; Zhou, W.-J.; Lan, Y.; Yu, B.; Yu, D.-G. Visible-Light-Driven Anti-Markovnikov Hydrocarboxylation of Acrylates and Styrenes with CO2. CCS Chem. 2021, 3, 1746–1756. DOI: 10.31635/ccschem.020.202000374
  3. Wang, Y.; Ren, W.; Li, J.; Wang, H.; Shi, Y. Facile Palladium-Catalyzed Hydrocarboxylation of Olefins without External CO Gas. Org.  Lett. 2014, 16, 5960–5963. DOI: 10.1021/ol502987f
  4. Hendy, C. M.; Smith, G. C.; Xu, Z.; Lian, T.; Jui, N. T. Radical Chain Reduction via Carbon Dioxide Radical Anion (CO2−). J. Am. Chem. Soc. 2021, 143, 8987−8992. DOI: 10.1021/jacs.1c04427

ケムステ内関連記事

Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 化学系研究室ホームページ作成ガイド
  2. パラジウム光触媒が促進するHAT過程:アルコールの脱水素反応への…
  3. 日本化学会 第104春季年会 付設展示会ケムステキャンペーン P…
  4. 【基礎からわかる/マイクロ波化学(株)ウェビナー】 マイクロ波の…
  5. 耐薬品性デジタルマノメーター:バキューブランド VACUU・VI…
  6. Chemistry on Thanksgiving Day
  7. サーモサイエンティフィック「Exactive Plus」: 誰で…
  8. アカデミックから民間企業への転職について考えてみる

注目情報

ピックアップ記事

  1. 三井化学、「環状オレフィンコポリマー(商標:アペル)」の生産能力増強を決定
  2. 内部アルケン、ついに不斉ヒドロアミノ化に屈する
  3. サイエンスアゴラ2015総括
  4. 歯のバイオフィルム除去と病原体検出を狙ったマイクロロボットの開発
  5. 尿酸 Uric Acid 〜痛風リスクと抗酸化作用のジレンマ〜
  6. 科学はわくわくさせてくれるものーロレアル-ユネスコ賞2015 PartII
  7. ペプチド模倣体としてのオキセタニルアミノ酸
  8. 高収率・高選択性―信頼性の限界はどこにある?
  9. トリフルオロ酢酸パラジウム(II):Palladium(II) Trifluoroacetate
  10. ロバート・クラブトリー Robert H. Crabtree

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年10月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

植物繊維を叩いてアンモニアをつくろう ~メカノケミカル窒素固定新合成法~

Tshozoです。今回また興味深い、農業や資源問題の解決の突破口になり得る窒素固定方法がNatu…

自己実現を模索した50代のキャリア選択。「やりたいこと」が年収を上回った瞬間

50歳前後は、会社員にとってキャリアの大きな節目となります。定年までの道筋を見据えて、現職に留まるべ…

イグノーベル賞2024振り返り

ノーベル賞も発表されており、イグノーベル賞の紹介は今更かもしれませんが紹介記事を作成しました。 …

亜鉛–ヒドリド種を持つ金属–有機構造体による高温での二酸化炭素回収

亜鉛–ヒドリド部位を持つ金属–有機構造体 (metal–organic frameworks; MO…

求人は増えているのになぜ?「転職先が決まらない人」に共通する行動パターンとは?

転職市場が活発に動いている中でも、なかなか転職先が決まらない人がいるのはなぜでしょう…

三脚型トリプチセン超分子足場を用いて一重項分裂を促進する配置へとペンタセンクロモフォアを集合化させることに成功

第634回のスポットライトリサーチは、 東京科学大学 物質理工学院(福島研究室)博士課程後期3年の福…

2024年の化学企業グローバル・トップ50

グローバル・トップ50をケムステニュースで取り上げるのは定番になっておりましたが、今年は忙しくて発表…

早稲田大学各務記念材料技術研究所「材研オープンセミナー」

早稲田大学各務記念材料技術研究所(以下材研)では、12月13日(金)に材研オープンセミナーを実施しま…

カーボンナノベルトを結晶溶媒で一直線に整列! – 超分子2層カーボンナノチューブの新しいボトムアップ合成へ –

第633回のスポットライトリサーチは、名古屋大学理学研究科有機化学グループで行われた成果で、井本 大…

第67回「1分子レベルの酵素活性を網羅的に解析し,疾患と関わる異常を見つける」小松徹 准教授

第67回目の研究者インタビューです! 今回は第49回ケムステVシンポ「触媒との掛け算で拡張・多様化す…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP