[スポンサーリンク]

化学者のつぶやき

ギ酸ナトリウムでconPETを進化!

[スポンサーリンク]

塩化アリールのラジカルカップリング反応が開発された。芳香環の電子状態にかかわらず種々の塩化アリールに適用できる。還元剤として用いたギ酸ナトリウムが本手法の鍵である。

ギ酸ナトリウムを用いた新たな光触媒系の開発

アリールラジカルは多様な変換が可能な有用中間体である。アリールラジカルの生成法の一つに、可視光レドックス触媒を用いたハロゲン化アリールの還元が知られる(図 1A)。しかし、強力な還元力が必要であるため、塩化アリールをアリールラジカルに変換する例はいまだに少ない。
最近、Königらによって連続光誘起電子移動(consecutive Photoinduced Electron Transfer: conPET)と呼ばれる手法が報告された[1]。この手法は、光照射により励起された可視光レドックス触媒(PC*)と還元剤との一電子移動(Single Electron Transfer: SET)により生じたラジカルアニオン(PC•–)が、再び励起されることで、強力な還元力をもつ光触媒(PC•–*)を生成する方法である(図 1B)。しかし、conPETを含む可視光レドックス触媒反応では、電子豊富な塩化アリールの官能基変換は水素化とホウ素化に限られていた(図 1C)[2–4]。一方で最近、電気化学的に還元した可視光レドックス触媒(PC•–)を励起することで、励起したラジカルアニオン(PC•–*)を生成する方法が相次いで報告された(図 1B)[6–8]。この手法によって、電子豊富な塩化アリールの水素化・ホウ素化以外の官能基変換が達成されたが、電解装置が必要であった。
今回、本論文の著者であるWickensらはconPETにおける還元剤としてギ酸ナトリウムを、可視光レドックス触媒として4-DPAIPNを用いることで、電子豊富な塩化アリールを基質とする種々のラジカルカップリングを可能にした(図1D)。

図1. (A) ハロゲン化アリールの還元によるアリールラジカルの生成法 (B) conPET と電気化学的還元/光励起 (C) 塩化アリールの官能基変換(D) 今回の研究

 

Non-innocent Radical Ion Intermediates in Photoredox Catalysis: Parallel Reduction Modes Enable Coupling of Diverse Aryl Chlorides
Chmiel, A. F.; Williams, O. P.; Chernowsky, C. P.; Yeung, C. S.; Wickens, Z. K. J. Am. Chem. Soc. 2021, 143, 10882–10889.
DOI: 10.1021/jacs.1c05988

研究者:Zachary K. Wickens
研究者の経歴:
2006–2010                  B.A., Macalester College, USA
2010–2015                  Ph.D., California Institute of Technology, USA (Prof. Robert H. Grubbs)
2015–2018                  Postdoc, Harvard University, USA (Prof. Eric N. Jacobsen)
2018–                             Assistant Professor, University of Wisconsin–Madison, USA
研究内容:電気化学、光化学

研究者:Charles S. Yeung
研究者の経歴:2002–2006                  BSc, The University of British Columbia, Canada
2006–2011                  Ph.D., University of Toronto, Canada (Prof. Vy M. Dong)
2012–2015                  Postdoc, Harvard University, USA (Prof. Eric N. Jacobsen)
2015–                             Medicinal Chemist, Merck, USA
研究内容:メディシナルケミストリー、触媒反応の開発

論文の概要

著者らはまず、1aの脱ハロゲン化反応に対する光触媒と還元剤を検討した(図 2A)。その結果、光照射下(405 nm)、1aにシクロヘキシルチオール、4-DPAIPN、ギ酸ナトリウムを反応させると、収率70%で2aを与えることを見いだした。次に基質適用範囲を調査した。本手法は電子供与基をもつ還元されにくい塩化アリール1bにも適用可能で、収率92%で2bが得られた。また、塩化アリールの代わりにアニリニウム塩(1c)やアリールホスファート(1d)を出発物質に用いても、高収率で還元体を得ることができた。
続いて、本手法を三種類のラジカルカップリング反応に適用した(図 2B)。電子豊富な塩化アリール(1e and 1g)に加え、エステル(1f)やカーバマート(1h)を用いても問題なくホスホニル化、ホウ素化反応が進行し対応する2を与えた。さらに、アルケンのヒドロアリール化(1i1k)にも適用できた。
著者らは次のように反応機構を推定した(図 2C)。まず、光照射によりPCと二分子のギ酸ナトリウムからPC•–Aが生成し反応が開始する。PC•–は光照射下で塩化アリールと反応してアリールラジカルを生成し、PCが再生する。Aは(i)PCPC•–へ還元する、(ii)塩化アリールをアリールラジカルへ直接還元する、という二つの役割を担うと考えられている。生成したアリールラジカルは種々のラジカルカップリング反応を経て、所望の化合物を与える。

図2. (A) 基質適用範囲(水素化) (B) 基質適用範囲(ラジカルカップリング反応) (C) 推定反応機構

 

以上、著者らはconPETに4-DPAIPNとギ酸ナトリウムを利用することで、電子豊富な塩化アリールの官能基変換に新たな選択肢を与えた。

参考文献

  1. Ghosh, I.; Ghosh, T.; Bardagi, J. I.; König, B. Reduction of Aryl Halides by Consecutive Visible Light-Induced Electron Transfer Processes. Science2014, 346, 725–728. DOI: 1126/science.1258232
  2. Jin, S.; Dang, H. T.; Haug, G. C.; He, R.; Nguyen, V. D.; Nguyen, V. T.; Arman, H. D.; Schanze, K. S.; Larionov, O. V. Visible Light-Induced Borylation of C–O, C–N, and C–X Bonds. J. Am. Chem. Soc. 2020, 142, 1603–1613. DOI: 10.1021/jacs.9b12519
  3. MacKenzie, I. A.; Wang, L.; Onuska, N. P. R.; Williams, O. F.; Begam, K.; Moran, A. M.; Dunietz, B. D.; Nicewicz, D. A. Discovery and Characterization of an Acridine Radical Photoreductant. Nature 2020, 580, 76–80. DOI: 1038/s41586-020-2131-1
  4. Zhang, L.; Jiao, L. Visible-Light-Induced Organocatalytic Borylation of Aryl Chlorides. J. Am. Chem. Soc. 2019, 141, 9124–9128. DOI:10.1021/jacs.9b00917
  5. Cowper, N. G. W.; Chernowsky, C. P.; Williams, O. P.; Wickens, Z. K. Potent Reductants via Electron-Primed Photoredox Catalysis: Unlocking Aryl Chlorides for Radical Coupling. J. Am. Chem. Soc. 2020, 142, 2093–2099. DOI: 10.1021/jacs.9b12328
  6. Kim, H.; Kim, H.; Lambert, T. H.; Lin, S. Reductive Electrophotocatalysis: Merging Electricity and Light to Achieve Extreme Reduction Potentials. J. Am. Chem. Soc. 2020, 142, 2087–2092. DOI: 10.1021/jacs.9b10678
  7. Barham, J. P.; König, B. Synthetic Photoelectrochemistry. Angew. Chem., Int. Ed. 2020, 59, 11732–11747. DOI: 1002/anie.201913767
  8. Kvasovs, N.; Gevorgyan, V. Contemporary Methods for Generation of Aryl Radicals. Chem. Soc. Rev. 2021, 50, 2244–2259. DOI: 1039/d0cs00589d
  9. 本論文と同時期に類似の触媒系が相次いで報告された。(a) 4CzIPNとギ酸ナトリウムを利用した塩化アリールのラジカルカップリングHendy, C. M.; Smith, G. C.; Xu, Z.; Lian, T.; Jui, N. T. Radical Chain Reduction via Carbon Dioxide Radical Anion (CO2). J. Am. Chem. Soc. 2021, 143, 24, 8987–8992. DOI: 10.1021/jacs.1c04427 (b) アリールアミン光触媒とギ酸ナトリウムを利用した塩化アリールの還元的重水素 Li, Y.; Ye, Z.; Lin, Y.-M.; Liu, Y.; Zhang, Y.; Gong, L. Organophotocatalytic Selective Deuterodehalogenation of Aryl or Alkyl Chlorides. Nat. Commun. 2021, 12, 2894. DOI: 10.1038/s41467-021-23255-0 (c) 3CzEPAIPNとシュウ酸ナトリウムを利用した塩化アリールのラジカルカップリング Xu, J,; Cao, J.; Wu, X.; Wang, H.; Yang, X.; Tang, X.; Toh, R.W.; Zhou, R.; Yeow, E.K.L.; Wu, J. Unveiling Extreme Photoreduction Potentials of Donor−Acceptor Cyanoarenes to Access Aryl Radicals from Aryl Chlorides. J. Am. Chem. Soc. 2021, 143, 13266−13273. DOI: 10.1021/jacs.1c05994
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. エノールエーテルからα-三級ジアルキルエーテルをつくる
  2. ぱたぱた組み替わるブルバレン誘導体を高度に置換する
  3. 化学系人材の、より良い将来選択のために
  4. とある化学者の海外研究生活:アメリカ就職編
  5. 酸素を使った触媒的Dess–Martin型酸化
  6. アルコールをアルキル化剤に!ヘテロ芳香環のC-Hアルキル化
  7. 有機合成化学協会誌2022年10月号:トリフルオロメチル基・気体…
  8. 触媒的炭素–水素結合活性化による含七員環ナノカーボンの合成 〜容…

注目情報

ピックアップ記事

  1. 熊田 誠 Makoto Kumada
  2. バールエンガ試薬 Barluenga’s Reagent
  3. 100年前のノーベル化学賞ーリヒャルト・ヴィルシュテッター
  4. クマリンを用いたプロペラ状π共役系発光色素の開発
  5. スタチンのふるさとを訪ねて
  6. 第31回光学活性化合物シンポジウム
  7. ビュッヒ・フラッシュクロマト用カートリッジもれなくプレゼント!
  8. はてブ週間ランキング第四位を獲得
  9. comparing with (to)の使い方
  10. Brønsted酸触媒とヒドロシランによるシラFriedel-Crafts反応

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年10月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

MEDCHEM NEWS 34-1 号「創薬を支える計測・検出技術の最前線」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

医薬品設計における三次元性指標(Fsp³)の再評価

近年、医薬品開発において候補分子の三次元構造が注目されてきました。特に、2009年に発表された論文「…

AI分子生成の導入と基本手法の紹介

本記事では、AIや情報技術を用いた分子生成技術の有機分子設計における有用性や代表的手法について解説し…

第53回ケムステVシンポ「化学×イノベーション -女性研究者が拓く未来-」を開催します!

第53回ケムステVシンポの会告です!今回のVシンポは、若手女性研究者のコミュニティと起業支援…

Nature誌が発表!!2025年注目の7つの技術!!

こんにちは,熊葛です.毎年この時期にはNature誌で,その年注目の7つの技術について取り上げられま…

塩野義製薬:COVID-19治療薬”Ensitrelvir”の超特急製造開発秘話

新型コロナウイルス感染症は2023年5月に5類移行となり、昨年はこれまでの生活が…

コバルト触媒による多様な低分子骨格の構築を実現 –医薬品合成などへの応用に期待–

第 642回のスポットライトリサーチは、武蔵野大学薬学部薬化学研究室・講師の 重…

ヘム鉄を配位するシステイン残基を持たないシトクロムP450!?中には21番目のアミノ酸として知られるセレノシステインへと変異されているP450も発見!

こんにちは,熊葛です.今回は,一般的なP450で保存されているヘム鉄を配位するシステイン残基に,異な…

有機化学とタンパク質工学の知恵を駆使して、カリウムイオンが細胞内で赤く煌めくようにする

第 641 回のスポットライトリサーチは、東京大学大学院理学系研究科化学専攻 生…

CO2 の排出はどのように削減できるか?【その1: CO2 の排出源について】

大気中の二酸化炭素を減らす取り組みとして、二酸化炭素回収·貯留 (CCS; Carbon dioxi…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー