[スポンサーリンク]

化学者のつぶやき

ギ酸ナトリウムでconPETを進化!

[スポンサーリンク]

塩化アリールのラジカルカップリング反応が開発された。芳香環の電子状態にかかわらず種々の塩化アリールに適用できる。還元剤として用いたギ酸ナトリウムが本手法の鍵である。

ギ酸ナトリウムを用いた新たな光触媒系の開発

アリールラジカルは多様な変換が可能な有用中間体である。アリールラジカルの生成法の一つに、可視光レドックス触媒を用いたハロゲン化アリールの還元が知られる(図 1A)。しかし、強力な還元力が必要であるため、塩化アリールをアリールラジカルに変換する例はいまだに少ない。
最近、Königらによって連続光誘起電子移動(consecutive Photoinduced Electron Transfer: conPET)と呼ばれる手法が報告された[1]。この手法は、光照射により励起された可視光レドックス触媒(PC*)と還元剤との一電子移動(Single Electron Transfer: SET)により生じたラジカルアニオン(PC•–)が、再び励起されることで、強力な還元力をもつ光触媒(PC•–*)を生成する方法である(図 1B)。しかし、conPETを含む可視光レドックス触媒反応では、電子豊富な塩化アリールの官能基変換は水素化とホウ素化に限られていた(図 1C)[2–4]。一方で最近、電気化学的に還元した可視光レドックス触媒(PC•–)を励起することで、励起したラジカルアニオン(PC•–*)を生成する方法が相次いで報告された(図 1B)[6–8]。この手法によって、電子豊富な塩化アリールの水素化・ホウ素化以外の官能基変換が達成されたが、電解装置が必要であった。
今回、本論文の著者であるWickensらはconPETにおける還元剤としてギ酸ナトリウムを、可視光レドックス触媒として4-DPAIPNを用いることで、電子豊富な塩化アリールを基質とする種々のラジカルカップリングを可能にした(図1D)。

図1. (A) ハロゲン化アリールの還元によるアリールラジカルの生成法 (B) conPET と電気化学的還元/光励起 (C) 塩化アリールの官能基変換(D) 今回の研究

 

Non-innocent Radical Ion Intermediates in Photoredox Catalysis: Parallel Reduction Modes Enable Coupling of Diverse Aryl Chlorides
Chmiel, A. F.; Williams, O. P.; Chernowsky, C. P.; Yeung, C. S.; Wickens, Z. K. J. Am. Chem. Soc. 2021, 143, 10882–10889.
DOI: 10.1021/jacs.1c05988

研究者:Zachary K. Wickens
研究者の経歴:
2006–2010                  B.A., Macalester College, USA
2010–2015                  Ph.D., California Institute of Technology, USA (Prof. Robert H. Grubbs)
2015–2018                  Postdoc, Harvard University, USA (Prof. Eric N. Jacobsen)
2018–                             Assistant Professor, University of Wisconsin–Madison, USA
研究内容:電気化学、光化学

研究者:Charles S. Yeung
研究者の経歴:2002–2006                  BSc, The University of British Columbia, Canada
2006–2011                  Ph.D., University of Toronto, Canada (Prof. Vy M. Dong)
2012–2015                  Postdoc, Harvard University, USA (Prof. Eric N. Jacobsen)
2015–                             Medicinal Chemist, Merck, USA
研究内容:メディシナルケミストリー、触媒反応の開発

論文の概要

著者らはまず、1aの脱ハロゲン化反応に対する光触媒と還元剤を検討した(図 2A)。その結果、光照射下(405 nm)、1aにシクロヘキシルチオール、4-DPAIPN、ギ酸ナトリウムを反応させると、収率70%で2aを与えることを見いだした。次に基質適用範囲を調査した。本手法は電子供与基をもつ還元されにくい塩化アリール1bにも適用可能で、収率92%で2bが得られた。また、塩化アリールの代わりにアニリニウム塩(1c)やアリールホスファート(1d)を出発物質に用いても、高収率で還元体を得ることができた。
続いて、本手法を三種類のラジカルカップリング反応に適用した(図 2B)。電子豊富な塩化アリール(1e and 1g)に加え、エステル(1f)やカーバマート(1h)を用いても問題なくホスホニル化、ホウ素化反応が進行し対応する2を与えた。さらに、アルケンのヒドロアリール化(1i1k)にも適用できた。
著者らは次のように反応機構を推定した(図 2C)。まず、光照射によりPCと二分子のギ酸ナトリウムからPC•–Aが生成し反応が開始する。PC•–は光照射下で塩化アリールと反応してアリールラジカルを生成し、PCが再生する。Aは(i)PCPC•–へ還元する、(ii)塩化アリールをアリールラジカルへ直接還元する、という二つの役割を担うと考えられている。生成したアリールラジカルは種々のラジカルカップリング反応を経て、所望の化合物を与える。

図2. (A) 基質適用範囲(水素化) (B) 基質適用範囲(ラジカルカップリング反応) (C) 推定反応機構

 

以上、著者らはconPETに4-DPAIPNとギ酸ナトリウムを利用することで、電子豊富な塩化アリールの官能基変換に新たな選択肢を与えた。

参考文献

  1. Ghosh, I.; Ghosh, T.; Bardagi, J. I.; König, B. Reduction of Aryl Halides by Consecutive Visible Light-Induced Electron Transfer Processes. Science2014, 346, 725–728. DOI: 1126/science.1258232
  2. Jin, S.; Dang, H. T.; Haug, G. C.; He, R.; Nguyen, V. D.; Nguyen, V. T.; Arman, H. D.; Schanze, K. S.; Larionov, O. V. Visible Light-Induced Borylation of C–O, C–N, and C–X Bonds. J. Am. Chem. Soc. 2020, 142, 1603–1613. DOI: 10.1021/jacs.9b12519
  3. MacKenzie, I. A.; Wang, L.; Onuska, N. P. R.; Williams, O. F.; Begam, K.; Moran, A. M.; Dunietz, B. D.; Nicewicz, D. A. Discovery and Characterization of an Acridine Radical Photoreductant. Nature 2020, 580, 76–80. DOI: 1038/s41586-020-2131-1
  4. Zhang, L.; Jiao, L. Visible-Light-Induced Organocatalytic Borylation of Aryl Chlorides. J. Am. Chem. Soc. 2019, 141, 9124–9128. DOI:10.1021/jacs.9b00917
  5. Cowper, N. G. W.; Chernowsky, C. P.; Williams, O. P.; Wickens, Z. K. Potent Reductants via Electron-Primed Photoredox Catalysis: Unlocking Aryl Chlorides for Radical Coupling. J. Am. Chem. Soc. 2020, 142, 2093–2099. DOI: 10.1021/jacs.9b12328
  6. Kim, H.; Kim, H.; Lambert, T. H.; Lin, S. Reductive Electrophotocatalysis: Merging Electricity and Light to Achieve Extreme Reduction Potentials. J. Am. Chem. Soc. 2020, 142, 2087–2092. DOI: 10.1021/jacs.9b10678
  7. Barham, J. P.; König, B. Synthetic Photoelectrochemistry. Angew. Chem., Int. Ed. 2020, 59, 11732–11747. DOI: 1002/anie.201913767
  8. Kvasovs, N.; Gevorgyan, V. Contemporary Methods for Generation of Aryl Radicals. Chem. Soc. Rev. 2021, 50, 2244–2259. DOI: 1039/d0cs00589d
  9. 本論文と同時期に類似の触媒系が相次いで報告された。(a) 4CzIPNとギ酸ナトリウムを利用した塩化アリールのラジカルカップリングHendy, C. M.; Smith, G. C.; Xu, Z.; Lian, T.; Jui, N. T. Radical Chain Reduction via Carbon Dioxide Radical Anion (CO2). J. Am. Chem. Soc. 2021, 143, 24, 8987–8992. DOI: 10.1021/jacs.1c04427 (b) アリールアミン光触媒とギ酸ナトリウムを利用した塩化アリールの還元的重水素 Li, Y.; Ye, Z.; Lin, Y.-M.; Liu, Y.; Zhang, Y.; Gong, L. Organophotocatalytic Selective Deuterodehalogenation of Aryl or Alkyl Chlorides. Nat. Commun. 2021, 12, 2894. DOI: 10.1038/s41467-021-23255-0 (c) 3CzEPAIPNとシュウ酸ナトリウムを利用した塩化アリールのラジカルカップリング Xu, J,; Cao, J.; Wu, X.; Wang, H.; Yang, X.; Tang, X.; Toh, R.W.; Zhou, R.; Yeow, E.K.L.; Wu, J. Unveiling Extreme Photoreduction Potentials of Donor−Acceptor Cyanoarenes to Access Aryl Radicals from Aryl Chlorides. J. Am. Chem. Soc. 2021, 143, 13266−13273. DOI: 10.1021/jacs.1c05994
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. SciFinderマイスター決定!
  2. 産官学の深耕ー社会への発信+若い力への後押しー第1回CSJ化学フ…
  3. 製薬業界の現状
  4. 歯車の回転数は、当てる光次第 -触媒量のDDQ光触媒で行うベンゼ…
  5. 分子構造を 3D で観察しよう (3):新しい見せ方
  6. KISTEC教育講座 「社会実装を目指すマイクロ流体デバイス」 …
  7. 高効率な可視-紫外フォトン・アップコンバージョン材料の開発 ~太…
  8. bothの使い方

注目情報

ピックアップ記事

  1. 富士通、化合物分子設計統合支援ソフト「キャッシュ」新バージョンを販売
  2. 光電変換機能を有するナノシートの合成
  3. 第58回「新しい分子が世界を変える力を信じて」山田容子 教授
  4. 第149回―「ガスの貯蔵・分離・触媒変換に役立つ金属-有機構造体の開発」Banglin Chen教授
  5. MOFはイオンのふるい~リチウム-硫黄電池への応用事例~
  6. シャレット不斉シクロプロパン化 Charette Asymmetric Cyclopropanation
  7. エノラートのα-アルキル化反応 α-Alkylation of Enolate
  8. フッ素の特性が織りなす分子変換・材料化学(CSJカレントレビュー:47)
  9. 巻いている触媒を用いて環を巻く
  10. Hybrid Materials 2013に参加してきました!

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年10月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

今年は Carl Bosch 生誕 150周年です

Tshozoです。タイトルの件、本国で特に大きなイベントはないようなのですが、筆者が書かずに誰が…

ペンタフルベンが環構築の立役者!Bipolarolide D の全合成

4つの五員環が連結するユニークな構造をもつ天然物bipolarolide Dの全合成を達成した。エナ…

植物由来アルカロイドライブラリーから新たな不斉有機触媒の発見

第632回のスポットライトリサーチは、千葉大学大学院医学薬学府(中分子化学研究室)博士課程後期3年の…

MEDCHEM NEWS 33-4 号「創薬人育成事業の活動報告」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

第49回ケムステVシンポ「触媒との掛け算で拡張・多様化する化学」を開催します!

第49回ケムステVシンポの会告を致します。2年前(32回)・昨年(41回)に引き続き、今年も…

【日産化学】新卒採用情報(2026卒)

―研究で未来を創る。こんな世界にしたいと理想の姿を描き、実現のために必要なものをうみだす。…

硫黄と別れてもリンカーが束縛する!曲がったπ共役分子の構築

紫外光による脱硫反応を利用することで、本来は平面であるはずのペリレンビスイミド骨格を歪ませることに成…

有機合成化学協会誌2024年11月号:英文特集号

有機合成化学協会が発行する有機合成化学協会誌、2024年11月号がオンライン公開されています。…

小型でも妥協なし!幅広い化合物をサチレーションフリーのELSDで検出

UV吸収のない化合物を精製する際、一定量でフラクションをすべて収集し、TLCで呈色試…

第48回ケムステVシンポ「ペプチド創薬のフロントランナーズ」を開催します!

いよいよ本年もあと僅かとなって参りましたが、皆様いかがお過ごしでしょうか。冬…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP