[スポンサーリンク]

化学者のつぶやき

フラーレン〜ケージを拡張、時々、内包〜

[スポンサーリンク]

トリアジン誘導体とNフェニルマレイミドを用いた、フラーレンのケージを拡張する新規手法が開発された。分子を内包したフラーレンに本手法を適用して物性を調査することで、実際に内部空間の拡張が認められた。

フラーレンのケージ拡張

炭素の同素体の一つであるフラーレンは、その球状構造に起因する優れた電子受容能や高い化学反応性、分子の包接能などの魅力的な性質をもつ[1]。フラーレンのケージが拡張できれば、より多数の分子や大きい分子の内包が可能となるため、新規物性の発現や新たな貯蔵媒体の創製が期待できる。しかし、実際にフラーレンを拡張した研究例は少ない。ケージ拡張が初めて達成されたのは、1991年のWudlらによる報告である(図1A)[2]。彼らはカルベンの付加とレトロ[2+2+2]反応によりC60からC61へとケージ拡張に成功したが、ケージが拡張されたフラーレンは質量分析および分光分析による検出にとどまった。また2003年にはRubinらにより、C60にテトラジン誘導体を作用させ、続くラジカル反応によりC62へとケージ拡張する手法が開発された[3]。既存の拡張法では、フラーレンのケージに新たに組み込める原子の数や種類が限られるため、新たなケージ拡張法の開発が望まれていた[4]
一方で、京都大学の小松、村田らはフラーレンの化学変換技術として分子手術法を開発している。分子手術法とはフラーレンを化学的に切開し、開口部より金属原子や小分子を挿入した後、再び開口部を化学的に縫合する手法である(図1B)。本手法を用いてH2Oを内包したフラーレンH2O@C60を始めとし、種々の原子や分子を内包させたフラーレン(内包フラーレン)が合成されている[5,6]
今回、村田らはトリアジン誘導体およびN-フェニルマレイミドを用いたフラーレンC60のケージ拡張法を開発し、ケージが拡張されたフラーレンC64NやC65Nの合成に成功した(図1C)。本手法はC70および内包フラーレンにも適用可能である。村田らはRubinらのケージ拡張法に基づき、テトラジンの代わりにトリアジンを用いることで、ケージのより大きな拡張を可能にした。また、ケージを拡張した内包フラーレンのNMR測定から、内部空間の大小を比較した。

図1. (A) フラーレンのケージ拡張の例 (B) 分子手術法の一例 (C) 本手法

 

“Cage-Expansion of Fullerenes”
Zhang, S.; Hashikawa, Y.; Murata, Y. J. Am. Chem. Soc.2021, 143,12450–12454.
DOI: 10.1021/jacs.1c05778

論文著者の紹介


研究者:Yasujiro Murata
研究者の経歴:
1993 B.S., Kyoto University, Japan
1995 M.S., Kyoto University, Japan (Prof. N. Sugita)
1998 Ph.D., Kyoto University, Japan (Prof. K. Komatsu)
1999 Assistant Professor Kyoto University, Japan (Prof. K. Komatsu)
2006 Associate Professor, Kyoto University, Japan
2009– Professor, Kyoto University, Japan
研究内容:小分子を内包したフラーレンの有機合成、有機太陽電池用新規材料開発、電荷輸送性材料の開発

論文の概要

著者らは、C60とトリアジン誘導体から合成されたフラーレン誘導体1N-フェニルマレイミド(PMI)を作用させ、C65Nケージ2を収率73%で得た(図2A)。2にEt3Nを用いた場合、C64Nケージ3およびC65Nケージ4をそれぞれ収率46%、47%で与えた。TsOH·H2Oを用いた酸性条件下ではC64Nケージ5のみが生成した。同様の方法によりC75Nケージも合成されている。
本反応の反応機構は図2Bのように想定された。フラーレン誘導体1とPMIのDiels–Alder反応により中間体IM1が生成後、レトロ[2+2+2]反応により中間体IM2となる。続くC–N結合形成反応により2を与える。塩基性条件下でのイミドの加水分解により中間体IM3が生成、続く脱炭酸により中間体IM4となる。最後にIM4のシクロプロパン環が開環して3が生成する。
著者らはケージ拡張した内包フラーレンの物性を調査している(図2C)。まず、X線結晶構造解析によりH2O内包フラーレンH2O@C75Nの構造を明らかにした。水分子はC75Nケージ内で、下側 (H2O-I)と上側 (H2O-II)の2ヶ所に局在し、その比は0.70:0.30であった。DFT計算から下側の位置(H2O-I)が上側の位置(H2O-II)よりもフラーレンとの相互作用が大きく安定であることが確認できた。また、ケージ拡張したフラーレンの内部空間の大きさを比較するため、H2内包フラーレンの1Hのスピン緩和時間(T1)をNMRで測定した。H2とN原子間の距離が近いほど、両者に働く磁気双極子相互作用が強くなり、1Hのスピンは速やかに緩和されるため、スピン緩和時間(T1)は小さくなる。測定の結果、炭素数の大きい内包フラーレンほどT1が大きくなったため、H2@(C59N)2 < H2@C64N < H2@C65N の順で、より大きな内部空間をもつことが示された。

図2. (A) ケージ拡張の条件 (B) 推定反応機構 (C) H2O@C75Nの結晶構造 (D) 各H2内包フラーレンにおける1Hのスピン緩和時間(T1)の温度変化(論文から引用、一部改変)

 

以上、フラーレンC60, C70をC65N, C75Nへと化学変換する手法が報告された。本手法は内包フラーレンのケージ拡張にも適用でき、スピン緩和時間の測定から内部空間の拡張を確認した。今後、さらなるフラーレンのケージ拡張法が確立され、望みの大きさと構造を有するケージが入手可能になることを期待する。

 参考文献

  1. Rodríguez-Fortea, A.; Balch, A. L.; Poblet, J. M. Endohedral Metallofullerenes: A Unique Host-Guest Association. Chem. Soc. Rev. 2011, 40, 3551–3563. DOI: 10.1039/C0CS00225A
  2. Suzuki, T.; Li, Q.; Khemani, K. C.; Wudl, F.; Almarsson, Ö. Systematic Inflation of Buckminsterfullerene C60: Synthesis of Diphenyl Fulleroids C61 to C66. Science 1991, 254, 1186–1188. DOI: 1126/science.254.5035.1186
  3. Qian, W.; Chuang, S.-C.; Amador, R. B.; Jarrosson, T.; Sander, M.; Pieniazek, S.; Khan, S. I.; Rubin, Y. Synthesis of Stable Derivatives of C62: The First Nonclassical Fullerene Incorporating a Four–Membered Ring. J. Am. Chem. Soc. 2003, 125, 2066–2067. DOI: 10.1021/ja029679s
  4. Ishitsuka, M. O.; Sano, S.; Enoki, H.; Sato, S.; Nikawa, H.; Tsuchiya, T.; Slanina, Z.; Mizorogi, N.; Liu, M. T. H.; Akasaka, T.; Nagase, S. Regioselective Bis-Functionalization of Endohedral Dimetallofullerene, La2@C80: Extremal La-La Distance. J.  Am. Chem. Soc. 2011, 133, 7128−7134. DOI: doi.org/10.1021/ja200903q
  5. Kurotobi, K.; Murata, Y. A Single Molecule of Water Encapsulated in Fullerene C60. Science 2011, 333, 613–616. DOI: 1126/science.1206376
  6. Vougioukalakis, G. C.; Roubelakis, M. M.; Orfanopoulos, M. Open-cagefullerenes: Towards the Construction of Nanosized Molecular Containers. Chem. Soc. Rev. 2010, 39, 817−844. DOI: 10.1039/b913766a

関連書籍

[amazonjs asin=”3527308202″ locale=”JP” title=”Fullerenes: Chemistry and Reactions”][amazonjs asin=”B00RZJR598″ locale=”JP” title=”Fullerenes and Other Carbon-Rich Nanostructures (Structure and Bonding Book 159) (English Edition)”]
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. Reaction Plus:生成物と反応物から反応経路がわかる
  2. (+)-ゴニオトキシンの全合成
  3. ポンコツ博士の海外奮闘録 〜ポスドク失職・海外オファー編〜
  4. 【サステナブルなものづくり】 マイクロ波の使い方セミナー 〜実験…
  5. 未来の科学コミュニティ
  6. 薬学部ってどんなところ?(学校生活編)
  7. C–C, C–F, C–Nを切ってC–N, C–Fを繋げるβ-フ…
  8. 6年越しで叶えた“海外と繋がる仕事がしたい”という夢

注目情報

ピックアップ記事

  1. 黒田 玲子 Reiko Kuroda
  2. PCに眠る未採択申請書を活用して、外部資金を狙う新たな手法
  3. 臭素系難燃剤など8種を禁止 有害化学物質の規制条約
  4. 薬剤師国家試験にチャレンジ!【有機化学編その1】
  5. 印象に残った天然物合成 2
  6. 日本化学会 平成17年度各賞受賞者決まる
  7. 2009年6月人気化学書籍ランキング
  8. 反応経路自動探索が見いだした新規3成分複素環構築法
  9. DFMS:ビス(ジフルオロメチルスルホニル)亜鉛
  10. 第54回国際化学オリンピックが開催、アジア勢が金メダルを独占

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年10月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

有機合成化学協会誌2024年12月号:パラジウム-ヒドロキシ基含有ホスフィン触媒・元素多様化・縮環型天然物・求電子的シアノ化・オリゴペプチド合成

有機合成化学協会が発行する有機合成化学協会誌、2024年12月号がオンライン公開されています。…

「MI×データ科学」コース ~データ科学・AI・量子技術を利用した材料研究の新潮流~

 開講期間 2025年1月8日(水)、9日(木)、15日(水)、16日(木) 計4日間申込みはこ…

余裕でドラフトに収まるビュッヒ史上最小 ロータリーエバポレーターR-80シリーズ

高性能のロータリーエバポレーターで、効率良く研究を進めたい。けれど設置スペースに限りがあり購入を諦め…

有機ホウ素化合物の「安定性」と「反応性」を両立した新しい鈴木–宮浦クロスカップリング反応の開発

第 635 回のスポットライトリサーチは、広島大学大学院・先進理工系科学研究科 博士…

植物繊維を叩いてアンモニアをつくろう ~メカノケミカル窒素固定新合成法~

Tshozoです。今回また興味深い、農業や資源問題の解決の突破口になり得る窒素固定方法がNatu…

自己実現を模索した50代のキャリア選択。「やりたいこと」が年収を上回った瞬間

50歳前後は、会社員にとってキャリアの大きな節目となります。定年までの道筋を見据えて、現職に留まるべ…

イグノーベル賞2024振り返り

ノーベル賞も発表されており、イグノーベル賞の紹介は今更かもしれませんが紹介記事を作成しました。 …

亜鉛–ヒドリド種を持つ金属–有機構造体による高温での二酸化炭素回収

亜鉛–ヒドリド部位を持つ金属–有機構造体 (metal–organic frameworks; MO…

求人は増えているのになぜ?「転職先が決まらない人」に共通する行動パターンとは?

転職市場が活発に動いている中でも、なかなか転職先が決まらない人がいるのはなぜでしょう…

三脚型トリプチセン超分子足場を用いて一重項分裂を促進する配置へとペンタセンクロモフォアを集合化させることに成功

第634回のスポットライトリサーチは、 東京科学大学 物質理工学院(福島研究室)博士課程後期3年の福…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP