[スポンサーリンク]

化学者のつぶやき

ビアリールのアリール交換なんてアリエルの!?

[スポンサーリンク]

ルテニウム触媒によるC(アリール)–C(アリール)結合のメタセシス反応が開発された。環歪みをもつC–C結合や分極したC–C結合以外のメタセシス反応として初めての例である。

C–C単結合のメタセシス反応

オレフィンメタセシスに代表される、二つの類似分子間のメタセシス反応は飛躍的な進展を遂げてきた。

一方で、C–C単結合のメタセシス反応は、反応性に乏しいC–C単結合の切断を伴うため困難とされる。C–C単結合のメタセシス反応の数少ない例として、1990年にVollhardtらはニッケル触媒によるビフェニレンの環歪みの解消を駆動力とする開環型二量化反応を開発した(図1A)[1,2]。また有澤、山口らはロジウム触媒による非対称ジベンジルケトンのC(アルキル)–C(カルボニル)結合の切断を伴うベンジル基交換反応を報告した(図1B)[3]

しかし、これら環歪みや分極したC–C単結合以外のメタセシス反応は報告例がない。

一方、近年シカゴ大学のDongらは、ピリジル配向基をもつビアリール1にルテニウム触媒と水素を用いると、C(アリール)–C(アリール)結合が切断され水素化体2が得られることを見いだした(図1C上)[4]。二つの配向基によりルテニウムがビアリールC–C結合に近接 (Int1の形成)することで強固なビアリールC–C結合が酸化的付加できたことが反応の鍵である。

今回、同教授らはルテニウム触媒存在下、二種類のビアリール13を反応させたところ、ビアリールC–C結合のメタセシス反応が進行し、クロスビアリール体4が得られることを見いだした(図1C下)。

図1. (A)ビフェニレンの開環型二量化反応、(B)分極したC–C結合のメタセシス反応、(C) C–C結合の還元的開裂反応およびメタセシス反応

 

“Orthogonal Cross-Coupling through Intermolecular Metathesis of Unstrained C(aryl)–C(aryl) Single Bonds”

Zhu, J.; Zhang, R.; Dong, G. Nat. Chem. 2021, 13, 836–842.

DOI: 10.1038/s41557-021-00757-4

論文著者の紹介

研究者:Guangbin Dong (董广彬)

研究者の経歴:

1999–2003 B.Sc. in Chemistry, Peking University, China (Prof. Z. Yang and Prof. J. Chen)
2004–2009 Ph.D. in Chemistry, Stanford University, USA (Prof. B. M. Trost)
2009–2011 Camile and Henry Dreyfus Postdoctoral Fellow, California Institute of Technology, USA (Prof. R. H. Grubbs)
2011–2016 Assistant Professor, University of Texas at Austin, USA
2016– Professor of Chemistry, The University of Chicago, USA

研究内容:C–H/C–C結合活性化反応の開発、天然物合成

論文の概要

検討の結果、著者らはルテニウム触媒cat 1およびピバル酸銀存在下、C4, C4’位に置換基をもつビアリール13をトルエン中130 °Cで24時間反応させると効率的にビアリールC–C結合のメタセシス反応が進行することを見いだした(図2A)。

なお、本反応は平衡反応であり、13の量論比から4の理論上の最高収率は68%である。C4, C4’位に種々の置換基をもつビアリール1が本反応に適用でき、高反応性の炭素–ハロゲン結合も保たれた(4ba, 4ca and 4da)。メトキシ基(4ea)やエステル(4fa)をもつクロスビアリール体も中程度の収率で得られた。配向基をピリジル基からイソキノリル基に変更しても反応は問題なく進行した(4ga)。しかし、ビアリール上C4, C4’位に置換基がない場合、クロスビアリール化体4hbの収率は17%にとどまり、水素化体56が多く副生した。

著者らは、DFT計算による反応機構解明研究の結果、このC4, C4’位の重要性に関して以下のように言及している(図2B)。

本反応では、出発物質1がルテニウム触媒に配位した中間体Int1(図1C参照)でC–C結合が酸化的付加する経路(path1)を経て4を与える。しかし、Int1から望まぬC–H切断 (path2)が競合すると副生成物5,6が生成することがわかった。C4位に置換基を導入すると、C–H切断経路の遷移状態TS2においてピリジルフェニル配位子(青色)との立体障害を誘起できるため、path2が抑制できた(詳しくは本文参照)。

図2. (A) 最適条件と基質適用範囲 (B) C4, C4’位の置換基効果

以上、ルテニウム触媒を用いた、C(アリール)–C(アリール)メタセシス反応が開発された。基質の制限や反応の平衡制御など課題は明白であるが、「こんなのアリエルの!?」と驚かずにはいられない分子変換反応である。

 参考文献

  1. Schwager, H.; Spyroudis, S.; Vollhardt, K. P. C. Tandem Palladium-, Cobalt-, and Nickel-Catalyzed Syntheses of Polycyclic p-Systems Containing Cyclobutadiene, Benzene, and Cyclooctatetraene Rings.J. Organomet. Chem. 1990, 382, 191–200. DOI: 10.1016/0022-328X(90)85227-P
  2. 反応機構はJonesらによって解明された。Edelbach, B. L.; Lachicotte, R. J.; Jones, W. D. Mechanistic Investigation of Catalytic Carbon–Carbon Bond Activation and Formation by Platinum and Palladium Phosphine Complexes. J. Am. Chem. Soc. 1998, 120, 2843–2853. DOI: 10.1021/ja973368d
  3. Arisawa, M.; Kuwajima, M.; Toriyama, F.; Li, G.; Yamaguchi, M. Rhodium-Catalyzed Acyl-Transfer Reaction between Benzyl Ketones and Thioesters: Synthesis of Unsymmetric Ketones by Ketone CO–C Bond Cleavage and Intermolecular Rearrangement. Org. Lett. 2012, 14, 3804–3807. DOI: 10.1021/ol3017148
  4. (a) Zhu, J.; Chen, P. H.; Lu, G.; Liu, P.; Dong, G. Ruthenium-Catalyzed Reductive Cleavage of Unstrained Aryl−Aryl Bonds: Reaction Development and Mechanistic Study.  J. Am. Chem. Soc. 2019. 141, 18630–18640. DOI: 10.1021/jacs.9b11605 (b) Zhu, J.; Wang, J.; Dong, G. Catalytic Activation of Unstrained C(aryl)–C(aryl) Bonds in 2,2′-Biphenols. Nat. Chem. 2019, 11, 45–51. DOI: 10.1038/s41557-018-0157-x
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 巨大複雑天然物ポリセオナミドBの細胞死誘導メカニズムの解明
  2. 高懸濁試料のろ過に最適なGFXシリンジフィルターを試してみた
  3. 室温以上で金属化する高伝導オリゴマー型有機伝導体を開発 ―電子機…
  4. もし新元素に命名することになったら
  5. 【山口代表も登壇!!】10/19-11/18ケミカルマテリアルJ…
  6. タミフルの効果
  7. 資金洗浄のススメ~化学的な意味で~
  8. 【書籍】研究者の仕事術~プロフェッショナル根性論~

注目情報

ピックアップ記事

  1. 論文をグレードアップさせるーMayer Scientific Editing
  2. エコエネルギー 家庭で競争
  3. PACIFICHEM2010に参加してきました!②
  4. アメリカへ博士号をとりにいく―理系大学院留学奮戦記
  5. 三菱ケミカル「レイヨン」買収へ
  6. 可視光レドックス触媒を用いた芳香環へのC-Hアミノ化反応
  7. 炭素をBNに置き換えると…
  8. こんな装置見たことない!化学エンジニアリングの発明品
  9. 光延反応 Mitsunobu Reaction
  10. ベンゼン環を壊す“アレノフィル”

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年10月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

植物繊維を叩いてアンモニアをつくろう ~メカノケミカル窒素固定新合成法~

Tshozoです。今回また興味深い、農業や資源問題の解決の突破口になり得る窒素固定方法がNatu…

自己実現を模索した50代のキャリア選択。「やりたいこと」が年収を上回った瞬間

50歳前後は、会社員にとってキャリアの大きな節目となります。定年までの道筋を見据えて、現職に留まるべ…

イグノーベル賞2024振り返り

ノーベル賞も発表されており、イグノーベル賞の紹介は今更かもしれませんが紹介記事を作成しました。 …

亜鉛–ヒドリド種を持つ金属–有機構造体による高温での二酸化炭素回収

亜鉛–ヒドリド部位を持つ金属–有機構造体 (metal–organic frameworks; MO…

求人は増えているのになぜ?「転職先が決まらない人」に共通する行動パターンとは?

転職市場が活発に動いている中でも、なかなか転職先が決まらない人がいるのはなぜでしょう…

三脚型トリプチセン超分子足場を用いて一重項分裂を促進する配置へとペンタセンクロモフォアを集合化させることに成功

第634回のスポットライトリサーチは、 東京科学大学 物質理工学院(福島研究室)博士課程後期3年の福…

2024年の化学企業グローバル・トップ50

グローバル・トップ50をケムステニュースで取り上げるのは定番になっておりましたが、今年は忙しくて発表…

早稲田大学各務記念材料技術研究所「材研オープンセミナー」

早稲田大学各務記念材料技術研究所(以下材研)では、12月13日(金)に材研オープンセミナーを実施しま…

カーボンナノベルトを結晶溶媒で一直線に整列! – 超分子2層カーボンナノチューブの新しいボトムアップ合成へ –

第633回のスポットライトリサーチは、名古屋大学理学研究科有機化学グループで行われた成果で、井本 大…

第67回「1分子レベルの酵素活性を網羅的に解析し,疾患と関わる異常を見つける」小松徹 准教授

第67回目の研究者インタビューです! 今回は第49回ケムステVシンポ「触媒との掛け算で拡張・多様化す…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP