[スポンサーリンク]

化学者のつぶやき

EDTA:分子か,双性イオンか

[スポンサーリンク]

EDTAの化学構造には,非イオン化分子であるテトラカルボン酸とカルボン酸アンモニウム双性イオンの2つの表記がある。それぞれの表記の裏付けをするために論文を精査したところ、EDTAは双性イオンとして存在する可能性が高いことが提案された。

EDTAの2つの表記

エチレンジアミン四酢酸(EDTA)は,化学教育の場面においてキレート滴定法などの分析実験に用いられることでよく知られている。さらに最近では,生化学や分子生物学の分野でも欠くことのできない試薬となっている。

分析化学のテキストや論文でEDTAの化学構造として表記されるものには,大きく次の二通りがある。

よく見かけるのは,左の非イオン化分子の表記の方だが、右に示すような双性イオンとしての表記もある。どちらがより適切なのだろうか?

この疑問を受け, EDTAの化学構造に関する論文を徹底的に文献調査した結果が「技術・教育研究論文誌」に報告された。

”EDTAの化学構造表記にみられる混乱―分子か双性イオンか”
野口 大介 技術・教育研究論文誌 2021, 28, 27–36. 機関リポジトリのページ

論文の概要

まず,EDTA(H4Y)の酸解離指数pKa値がH4YでpKa1 = 1.99,H3YでpKa2 = 2.67,H2Y2–でpKa3 = 6.16,HY3–でpKa4 = 10.23であること[1]から,各中和反応において水溶液中の溶存化学種がカルボン酸(-COOH)か,それともアンモニウム(=NH+)かを考察した。

EDTAがテトラカルボン酸の非イオン化分子として水溶液中に存在するとしよう。マレイン酸や酢酸のpKaはそれぞれ1.92および4.76で,およそ2 ~5であることから,EDTAのpKa3とpKa4の値(6.16と10.23)はカルボン酸にしては不自然なほどに大きい

今度は,EDTAが非イオン化分子でなく,双性イオンであるとしよう。EDTAのpKa3とpKa4が,第3級アンモニウム基の電離となる。第3級アンモニウム基のpKaは,キヌクリジンや1-エチルピペリジンでは10.71および10.55で,一般におよそ10~11である。EDTAのpKa4は10.23で妥当であるが,pKa3は6.16であるため,pKa3は第三級アンモニウム基にしては小さ過ぎる。分子内水素結合が形成されていると,pKaの値はそうでない場合に比べて変化することから,この場合,おそらく何らかの分子内水素結合を形成しているだろう。

このように,EDTAを非イオン化分子としてよりも双性イオンとして説明する方が, pKa値を,より矛盾がなく説明することが可能である。

次に,EDTAの固体および水溶液のIR測定が行われた研究論文を確認した[2]。カルボキシ基(–COOH)とカルボン酸基(–COO)の吸収波数はそれぞれ異なると予想されたことから,IRスペクトル測定でカルボニル基の吸収が1本しか検出されなければ,EDTAはテトラカルボン酸であり,2本検出されれば–COOHと–COOを有する双性イオンで存在することになる,という考えが当初は支配的だった。そして実際に,カルボニル基の吸収は1本しか検出されなかったのである。

しかしながら,–COOHおよび–COOの間で対称的な水素結合が形成されているとすれば,カルボニル基の吸収が例え1本しか検出されなくとも–COOHおよび–COOの両方が存在するという考えが提案されるに至り,水溶液中に加え固体中においても,EDTAは双性イオンとして存在すると実証されたのである。

IR測定に関する報告に前後して,X線を利用した分析も報告された。例えば,X線結晶構造解析(粉末解析も含む)によると,結晶中においてEDTAは,2つのアンモニウム基とカルボン酸基(カルボキシ基)が二股状の分子内水素結合を形成していることが明らかとされた[3]

X線結晶構造解析による,双性イオンとして存在するEDTA(出典:文献[3c]より改変)

その一方で,同じく固体をX線にて分析するX 線光電子分析(XPS)も報告された。IR測定ではカルボニル基の吸収に多く注目されていたが,N-H(重水素化の場合はN-D)については,強度が弱いことと,水溶液中の測定では水のO-H(重水のO-D)と重なってしまうことから,注目されてこなかった。XPSでは,光電子のエネルギーが測定され,窒素原子に由来する光電子には,エネルギー的に異なる2種類が存在することが明らかとなり,EDTAの固体においては,双性イオンとしてだけでなく,部分的には非イオン化分子としても存在しうることが推測された[4]

EDTAの化学構造の表記があいまいだった理由

以上,EDTAの化学構造を巡って問題とされたことで,先行研究論文から読み取れたことを,簡単にまとめておこう。

(1) EDTA自体は水に難溶であり,水溶液のIR測定が非常に困難であった。
(2) 分子内あるいは分子間水素結合がIR活性な結合の吸収波数を変化させてしまった。
(3) 固体中の測定か,それとも水溶液中の測定なのかがはっきりとは区別されずに,化学構造が議論されてしまった。
(4) EDTAには異なるIRスペクトルを示す2つの異なる結晶変態があるが,これはほとんど知られることがなかった。
(5) 研究報告が同時期に集中し,互いに十分に参照されなかった。

これを機に,よく知られたEDTAというキレート試薬の化学構造表記に存在する課題が広く認識され,化学を学ぶ学生や指導者,および関係の技術者らに,正しい理解を促すきっかけとなることが望まれる。

関連リンク

参考文献

  1. 花木 昭 金属キレートの溶液化学. 保健物理 1978, 13, 137–145. DOI: https://doi.org/10.5453/jhps.13.137
  2. (a) Busch, D. H.; Bailar, J. C., Jr. The stereochemistry of complex inorganic compounds. XVII. The stereochemistry of hexadentate ethylenediaminetetraacetic acid complexes. J. Am. Chem. Soc. 1953, 75, 4574–4575. DOI: https://doi.org/10.1021/ja01114a054 (b) Chapman, D. The infrared spectra of ethylenediaminetetra-acetic acid and its di- and tetra-sodium salts. J. Chem. Soc. 1955, 1766–1769. DOI: https://doi.org/10.1039/JR9550001766 (c) Nakamoto, K.; Morimoto, Y.; Martell, A. E. Infrared spectra of aqueous Solutions. III. Ethylenediaminetetraacetic acid, N-hydroxyethylethylenediaminetriacetic acid and diethylenetriaminepentaacetic acid. J. Am. Chem. Soc. 1963, 85, 309–313. DOI: https://doi.org/10.1021/ja00886a014 (d) Sawyer, D. T.; Tackett, J. E. Properties and infrared spectra of ethylenediaminetetraacetic acid complexes. IV. Structure of the ligand in solution. J. Am. Chem. Soc. 1963, 85, 314–316. DOI: https://doi.org/10.1021/ja01540a022 (e) Langer, H. G. Infrared spectra of ethylenediaminetetraacetic acid (EDTA). Inorg. Chem. 1963, 2, 1080–1081. DOI: https://doi.org/10.1021/ic50009a057 (f) Chapman, D.; Lloyd, D. R. Prince, R. H. An infrared and nuclear magnetic resonance study of the nature of ethylenediaminetetra-acetic acid and some related substances in solution: hydrogen bonding in α-amino-polycarboxylic acid systems. J. Chem. Soc. 1963, 3645–3658. DOI: https://doi.org/10.1039/JR9630003645 (g) Martynenko, L. I.; Pechurova, N. I.; Grigor’ev, A. I.; Spitsyn, V. I. Infrared spectroscopy investigation of the structure of ethylenediamine-tetraacetic acid and its salts. Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.) 1970,19, 1172–1177. DOI: https://doi.org/10.1007/BF00852653
  3. (a) LeBlanc, R. B.; Spell, H. L. The two crystal forms of (ethylene-dinitrilo)-tetraacetic acid. J. Phys. Chem. Vol.64, No.7, p.949 (1960). DOI: https://doi.org/10.1021/j100836a513 (b) Cotrait, M. La structure cristalline de l’acide éthylènediamine tétra-acétique, EDTA. Acta Cryst. 1972, B28, pp.781–785. DOI: https://doi.org/10.1107/S056774087200319X (c) Ladd, M. F. C.; Povey, D. C. Crystallographic and spectroscopic studies on ethylenediaminetetraacetic acid (edta) I. Crystal and molecular structure of β-edta. J. Cryst. Mol. Struct. 1973, 3,15–23. DOI: https://doi.org/10.1007/BF01636045
  4. Yoshida, T.; Sawada, S. X-ray photoelectron spectroscopy of EDTA. Bull. Chem. Soc. Jpn. 1974, 47, 50–53. DOI: https://doi.org/10.1246/bcsj.47.50

関連書籍

[amazonjs asin=”4807908707″ locale=”JP” title=”スクーグ分析化学”] [amazonjs asin=”4807904817″ locale=”JP” title=”分析化学実験”] [amazonjs asin=”4759814655″ locale=”JP” title=”分析化学の基礎―定量的アプローチ”]

関連記事

  1. オペレーションはイノベーションの夢を見るか? その3+まとめ
  2. ハリーポッターが参考文献に登場する化学論文
  3. 既存の農薬で乾燥耐性のある植物を育てる
  4. ESIPTを2回起こすESDPT分子
  5. マテリアルズ・インフォマティクスにおける高次元ベイズ最適化の活用…
  6. フォトメカニカル有機結晶を紫外線照射、世界最速で剥離
  7. 香りの化学4
  8. 穴の空いた液体

注目情報

ピックアップ記事

  1. 核酸医薬の物語3「核酸アプタマーとデコイ核酸」
  2. マンガン触媒による飽和炭化水素の直接アジド化
  3. ステープルペプチド Stapled Peptide
  4. 抗体ペアが抗原分子上に反応場をつくり出す―2つの抗体エピトープを利用したテンプレート反応の開発―
  5. 新規作用機序の不眠症治療薬ベルソムラを発売-MSD
  6. フィンケルシュタイン反応 Finkelstein Reaction
  7. ダン・シェヒトマン博士の講演を聞いてきました。
  8. 真空ポンプはなぜ壊れる?
  9. 向山 光昭 Teruaki Mukaiyama
  10. 有機合成化学協会誌2022年3月号:トリフリル基・固相多点担持ホスフィン・触媒的アリル化・スルホニル基・荷電π電子系/ 菅 敏幸 先生追悼

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年9月
 12345
6789101112
13141516171819
20212223242526
27282930  

注目情報

最新記事

日本化学連合シンポジウム 「海」- 化学はどこに向かうのか –

日本化学連合では、継続性のあるシリーズ型のシンポジウムの開催を企画していくことに…

【スポットライトリサーチ】汎用金属粉を使ってアンモニアが合成できたはなし

Tshozoです。 今回はおなじみ、東京大学大学院 西林研究室からの研究成果紹介(第652回スポ…

第11回 野依フォーラム若手育成塾

野依フォーラム若手育成塾について野依フォーラム若手育成塾では、国際企業に通用するリーダー…

第12回慶應有機化学若手シンポジウム

概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大学理工学部・…

新たな有用活性天然物はどのように見つけてくるのか~新規抗真菌剤mandimycinの発見~

こんにちは!熊葛です.天然物は複雑な構造と有用な活性を有することから多くの化学者を魅了し,創薬に貢献…

創薬懇話会2025 in 大津

日時2025年6月19日(木)~6月20日(金)宿泊型セミナー会場ホテル…

理研の研究者が考える未来のバイオ技術とは?

bergです。昨今、環境問題や資源問題の関心の高まりから人工酵素や微生物を利用した化学合成やバイオテ…

水を含み湿度に応答するラメラ構造ポリマー材料の開発

第651回のスポットライトリサーチは、京都大学大学院工学研究科(大内研究室)の堀池優貴 さんにお願い…

第57回有機金属若手の会 夏の学校

案内:今年度も、有機金属若手の会夏の学校を2泊3日の合宿形式で開催します。有機金…

高用量ビタミンB12がALSに治療効果を発揮する。しかし流通問題も。

2024年11月20日、エーザイ株式会社は、筋萎縮性側索硬化症用剤「ロゼバラミン…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー