[スポンサーリンク]

一般的な話題

日常臨床検査で測定する 血清酵素の欠損症ーChemical Times 特集より

[スポンサーリンク]

関東化学が発行する化学情報誌「ケミカルタイムズ」。年4回発行のこの無料雑誌の紹介をしています。

少し紹介が遅れましたが、今年のNo.3は血清酵素の欠損症について。血液検査の結果として2・3文字の略号で測定結果がでるあいつですね。

これが化学なのかは疑問ですが、毎回読んでいるので読んでみました。今回は記事が5つ紹介されています(記事はそれぞれのタイトルをクリックしていただければ全文無料で閲覧可能です。PDFファイル)。

LD(乳酸デヒドロゲナーゼ)欠損症

浜松医科大学医学部の前川 真人教授による寄稿。LDとその欠損症について述べています。LD(乳酸デヒドロゲナーゼ)はH(B)とM(A)の2種のサブユニット蛋白からなる4量体で、 5種のアイソザイムを形成します。

LD:乳酸デヒドロゲナーゼ(出典:PDB)

 

LDはピルビン酸をNADHにより還元して、乳酸に変換する酵素。すべての細胞に存在するらしいです。つまり大多数の細胞障害があると血清LD活性が上昇するため、感度の良い体内での異常発信シグナルとなり、初診時のスクリーニング検査において重要な役割を示すとのこと。

前半はLDの説明と検査の意義、後半は遺伝性変異によるLD欠損症患者について述べています。

LDアイソザイムの構成(出典:ケミカルタイムズ)

 

ALT異常低値の意義と解析方法について

九州大学病院の酒本美由紀主任臨床検査技師による寄稿。ALTとはアラニンアミノトランスフェラーゼという酵素の略で、生体内でアラニン-α-ケトグルタル酸とグルタミン酸・ピルビン酸との相互のアミノ基転位を触媒します。LDと同様にALTも細胞質に局在しており、生体内ほとんどすべての臓器細胞に存在、問題があるとその値がかなりかわってきます。特に肝臓に多く含まれ、肝臓が傷害されると血中へ逸脱するため、肝障害の仕様として用いられているそうです。

ALT:アラニンアミノトランスフェラーゼ(出典: PDB)

記事ではALT異常低値となる原因とその解析方法について、過去に健闘した事例を含めて紹介しています。

基本的にはALT異常低値となる原因として、アミノ基を運ぶ補酵素であるピリドキサールリン酸(PALP)の不足・欠乏が間接的にか関わるようです。珍しく構造式が書いてあって個人的には読みやすい内容でした。

ALTの酵素反応(出典:ケミカルタイムズ)

 

クレアチンキナーゼ欠損症

兵庫医科大学の小柴賢洋教授らによる寄稿。クレアチンキナーゼ(CK)はリン酸基転移反応を触媒する酵素で、筋肉や心臓、能などの組織に含まれます。筋肉などのエネルギー消費の大きい組織において、CKは重要な役割を有しているそうです。

CK:クレアチンキナーゼ(出典:PDB)

結晶構造は筋肉に含まれるもので、みてのとおりサブユニットの2量体で、この組み合わせによって、CK-MM, CKMB, CK-BBという3種類のアイソザイムが存在します。この血中における比率を測定することによって、疾患の存在部位を推定することが可能となるそうです。なるほどー。

CKアイソザイムの臨床的意義(出典:ケミカルタイムズ)

低ALP血症 vs 低ホスファターゼ症

金沢大学附属病院の渡邉淳特任教授による寄稿。ALPはアルカリホスファターゼで、糖タンパク。血清ALP中にはさまざまなアイソザイムが存在するそうです。

ALP:アルカリホスファターゼ(出典:PDB)

そのアイソザイムの量を確認することによって疾病との確認ができるそうですね。

血清ALPタンパク質を構成する遺伝子群(出典:ケミカルタイムズ)

血清コリンエステラーゼ欠損症

最後は1つめと同じく浜松医科大学前川真人教授らによる寄稿。コリネステラーぜ(ChE)はコリンエステルをコリンと有機酸に加水分解する酵素。大別するとアセチルコリンエステラーゼ(ACE)とブチリルコリンエステラーゼ(BChE)があります。

記事では主に、BChEの活性が上昇・低下した場合の関連する疾病とその測定法について述べています。

血清BChE活性の上昇・低下の原因(出典:ケミカルタイムズ)

というわけで、はじめは全然化学じゃないなと思いましたが、とってもしっかり化学でした。欠損症を測定する酵素もその役割も構造も知らなかったのでとても良い勉強になりました。ぜひ読んでみてください。

 

過去のケミカルタイムズ解説記事

外部リンク

Avatar photo

webmaster

投稿者の記事一覧

Chem-Station代表。早稲田大学理工学術院教授。専門は有機化学。主に有機合成化学。分子レベルでモノを自由自在につくる、最小の構造物設計の匠となるため分子設計化学を確立したいと考えている。趣味は旅行(日本は全県制覇、海外はまだ20カ国ほど)、ドライブ、そしてすべての化学情報をインターネットで発信できるポータルサイトを作ること。

関連記事

  1. 遷移金属触媒がいらないC–Nクロスカップリング反応
  2. 薬物耐性菌を学ぶーChemical Times特集より
  3. 第95回日本化学会付設展示会ケムステキャンペーン!Part I
  4. 1-ヒドロキシタキシニンの不斉全合成
  5. 第21回ケムステVシンポ「Grubbs触媒が導く合成戦略」を開催…
  6. ポルフィリン中心金属の違いが薄膜構造を変える~配位結合を利用した…
  7. ChemRxivへのプレプリント投稿・FAQ
  8. 化学素人の化学読本

注目情報

ピックアップ記事

  1. 巨大な垂直磁気異方性を示すペロブスカイト酸水素化物の発見 ―水素層と酸素層の協奏効果―
  2. Independence Day
  3. 藤沢晃治 「分かりやすい○○」の技術 シリーズ
  4. sp3炭素のクロスカップリング反応の機構解明研究
  5. ジョン・グッドイナフ John B. Goodenough
  6. エポキシ樹脂の硬化特性と硬化剤の使い方【終了】
  7. 化学は切手と縁が深い
  8. ジェレマイア・ジョンソン Jeremiah A. Johnson
  9. 日本薬学会第144回年会「有機合成化学の若い力」を開催します!
  10. クラリベイト・アナリティクスが「引用栄誉賞2018」を発表

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年8月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

MEDCHEM NEWS 34-1 号「創薬を支える計測・検出技術の最前線」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

医薬品設計における三次元性指標(Fsp³)の再評価

近年、医薬品開発において候補分子の三次元構造が注目されてきました。特に、2009年に発表された論文「…

AI分子生成の導入と基本手法の紹介

本記事では、AIや情報技術を用いた分子生成技術の有機分子設計における有用性や代表的手法について解説し…

第53回ケムステVシンポ「化学×イノベーション -女性研究者が拓く未来-」を開催します!

第53回ケムステVシンポの会告です!今回のVシンポは、若手女性研究者のコミュニティと起業支援…

Nature誌が発表!!2025年注目の7つの技術!!

こんにちは,熊葛です.毎年この時期にはNature誌で,その年注目の7つの技術について取り上げられま…

塩野義製薬:COVID-19治療薬”Ensitrelvir”の超特急製造開発秘話

新型コロナウイルス感染症は2023年5月に5類移行となり、昨年はこれまでの生活が…

コバルト触媒による多様な低分子骨格の構築を実現 –医薬品合成などへの応用に期待–

第 642回のスポットライトリサーチは、武蔵野大学薬学部薬化学研究室・講師の 重…

ヘム鉄を配位するシステイン残基を持たないシトクロムP450!?中には21番目のアミノ酸として知られるセレノシステインへと変異されているP450も発見!

こんにちは,熊葛です.今回は,一般的なP450で保存されているヘム鉄を配位するシステイン残基に,異な…

有機化学とタンパク質工学の知恵を駆使して、カリウムイオンが細胞内で赤く煌めくようにする

第 641 回のスポットライトリサーチは、東京大学大学院理学系研究科化学専攻 生…

CO2 の排出はどのように削減できるか?【その1: CO2 の排出源について】

大気中の二酸化炭素を減らす取り組みとして、二酸化炭素回収·貯留 (CCS; Carbon dioxi…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー