[スポンサーリンク]

化学者のつぶやき

アレ?アレノン使えばノンラセミ化?!

[スポンサーリンク]

ラセミ化しないペプチド合成への新しいアプローチが誕生した。アレノンを縮合剤として用いると、対応するジペプチドを高収率で与える。本手法は液相および固相ポリペプチド合成にも応用できる。

ペプチド縮合剤の開発

1901年にFischerらがジペプチドを合成して以来、創薬や材料化学を中心としたファインケミカル分野におけるペプチドの需要性が高まり、その合成研究は飛躍的な発展を遂げてきた。最も一般的なペプチド合成法は、縮合剤を用いた活性エステル中間体を経由するa-アミノ酸同士のペプチド結合形成であり、これまでに様々な縮合剤が開発されてきた。

初めて汎用された縮合剤は、Sheehanらによって開発されたジシクロヘキシルカルボジイミドである(Figure 1A) [1]。その後StevensとMunkらは、ケテンイミンを縮合剤とするペプチド結合形成反応を報告した(Figure 1B) [2]。しかし、これらの手法は、オキサゾロン形成(Path A)あるいは、カルボニルα位の分子内脱プロトン化(Path B)により進行する生成物のラセミ化が問題であった[3]。後者については、縮合剤由来の塩基中心が作用して起こる。ラセミ化を抑制するため、オキサゾロンが形成され難い中間体を経由するHOBtやHOAt、Oxymaなどが開発され、信頼性の高い補助縮合剤として利用されている。

一方、最近江西師範大学のZhaoらはイナミドがラセミ化を伴わないペプチド合成に有用な縮合剤であることを報告した(Figure 1C)[4]。窒素原子上の電子求引基であるトシル基がイナミドの塩基性を抑え、ラセミ化を回避する。しかしイナミドの反応性が低く、固相ペプチド合成には適用できない。
Zhaoらは、活性エステル生成には求電子的なsp炭素が必要であること、活性エステルの塩基性を抑えることがラセミ化防止の鍵であることに着目した。その結果、今回sp炭素をもつアレノンを用いると塩基性部位を含まないa-カルボニルビニルエステル中間体を経由して、ラセミ化することなく種々のペプチドが得られることを見いだした(Figure 1D)。

Figure 1. (A) Sheehanらの反応 (B) Stevensらの反応 (C) Zhaoらの反応 (D) 今回の反応

 

“Allenone-Mediated Racemization/Epimerization-Free Peptide Bond Formation and Its Application in Peptide Synthesis”
Wang, Z.; Wang, X.; Wang, P.; Zhao, J. J. Am. Chem. Soc. 2021, 143, 10374–10381.
DOI: 10.1021/jacs.1c04614

論文著者の紹介


研究者: Junfeng Zhao, 赵军锋 (Symform, 2019, PDF)
研究者の経歴:
1998–2001 B.S., Beijing Normal University
2002–2005 M.S., Central China Normal University (Prof. Mingwu Ding)
2005–2006 Ph. D. candidate, Chengdu Institute of Organic Chemistry (Prof. Liuzhu Gong)
2006–2010 Ph. D. Nanyang Technological University (Prof. Teckpeng Loh)
2010–2011 Postdoc, Nanyang Technological University (Prof. Chuanfa Liu)
2011–2013 Postdoc, University of Bonn (Prof. Michael Famulok) and University of Münster (Prof. Armido Studer)
2013–2014 Assistant Professor, University of Hong Kong (Prof. Dan Yang)
2014– Professor, Jiangxi Normal University

論文の概要

研究内容: 生物活性を有するペプチドやタンパク質、多環式化合物の合成および修飾法の開発
本反応は、a-カルボニルビニルエステル中間体合成とアミド縮合の2段階で進行する(Figure 2A)。著者らは、ジクロロエタン中、カルボン酸1とアレノン2を反応させると、1,4-付加と異性化のカスケード反応により良好な収率でα-カルボニルビニルエステル中間体3が得られることを見いだした。基質適用範囲は広く、脂肪族(1a)、芳香族(1b)、a,b-不飽和カルボン酸(1c and 1d)を用いたいずれの場合も良好な収率で対応する3a3dを与えた(Figure 2B)。続いてDMF中、3と種々のアミン4が反応することで対応するアミド5が得られた。このとき、嵩高いアミン(4a)や求核性の劣る芳香族アミン(4d)の反応では、触媒量のHOBtを加えることでそれぞれ5a5dが高収率で得られた。3の反応性が極めて高いことから、ワンポット反応でもアミドの収率はほとんど低下しない。
次に著者らは、本手法がペプチド合成にも適用できるかを検証した。その結果、種々の天然/非天然アミノ酸から対応するジペプチドがラセミ化することなく高収率で得られた(Figure 2C)。嵩高いN-メチルアミノ酸(5e)や、無保護のヒドロキシ基を有するトレオニンやセリン(5f and 5g)、無保護のアミノ基を有するトリプトファン(5h)をもつジペプチドも合成できる。さらに本手法は液相および固相のポリペプチド合成にも適用可能であることから、極めて実用性に富んだ反応といえる。

Figure2. (A) 反応経路 (B) アミド結合形成 (C) ペプチド結合形成

 

以上、アレノンを用いたペプチド結合形成反応が開発された。本手法は、ペプチド合成において最も厄介なラセミ化/エピメリ化を回避できる。今後、ペプチド医薬開発への貢献が期待される。

 参考文献

  1. Sheehan, J. C.; Hess, G. P. A New Method of Forming Peptide Bonds. J. Am. Chem. Soc. 1955, 77, 1067−1068. DOI: 10.1021/ja01609a099
  2. Stevens, C. L.; Munk, M. E. Nitrogen Analogs of Ketenes. V.1 Formation of the Peptide Bond. J. Am. Chem. Soc. 1958, 80, 4069−4071. DOI:10.1021/ja01548a060
  3. El-Faham, A.; Albericio, F. Peptide Coupling Reagents, More than a Letter Soup. Chem. Rev. 2011, 111, 6557−6602. DOI: 10.1021/cr100048w
  4. Hu, L.; Xu, S.; Zhao, Z.; Yang, Y.; Peng, Z.; Yang, M.; Wang,; Zhao, J. Ynamides as Racemization-Free Coupling Reagents for Amide and Peptide Synthesis. J. Am. Chem. Soc. 2016, 138, 13135−13138. DOI: 10.1021/jacs.6b07230
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 光誘起電子移動に基づく直接的脱カルボキシル化反応
  2. 社会に出てから大切さに気付いた教授の言葉
  3. 配位子保護金属クラスターを用いた近赤外―可視光変換
  4. 新形式の芳香族化合物を目指して~反芳香族シクロファンにおける三次…
  5. 信頼度の高い合成反応を学ぶ:Science of Synthes…
  6. 有機合成化学者が不要になる日
  7. 「坂田薫の『SCIENCE NEWS』」に出演します!
  8. Elsevierのニッチな化学論文誌たち

注目情報

ピックアップ記事

  1. 花粉症の薬いまむかし -フェキソフェナジンとテルフェナジン-
  2. ボールペンなどのグリップのはなし
  3. 試薬会社にみるノーベル化学賞2010
  4. ジョーンズ酸化 Jones Oxidation
  5. エドマン分解 Edman Degradation
  6. 光薬理学 Photopharmacology
  7. 製薬業界の現状
  8. はじめての研究生活マニュアル
  9. トリプトファン選択的タンパク質修飾反応 Trp-Selective Protein Modification
  10. 第61回―「デンドリマーの化学」Donald Tomalia教授

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年8月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

第23回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

持続可能な社会の実現に向けて、太陽電池は太陽光発電における中心的な要素として注目…

有機合成化学協会誌2025年3月号:チェーンウォーキング・カルコゲン結合・有機電解反応・ロタキサン・配位重合

有機合成化学協会が発行する有機合成化学協会誌、2025年3月号がオンラインで公開されています!…

CIPイノベーション共創プログラム「未来の医療を支えるバイオベンチャーの新たな戦略」

日本化学会第105春季年会(2025)で開催されるシンポジウムの一つに、CIPセッション「未来の医療…

OIST Science Challenge 2025 に参加しました

2025年3月15日から22日にかけて沖縄科学技術大学院大学 (OIST) にて開催された Scie…

ペーパークラフトで MOFをつくる

第650回のスポットライトリサーチには、化学コミュニケーション賞2024を受賞された、岡山理科大学 …

月岡温泉で硫黄泉の pH の影響について考えてみた 【化学者が行く温泉巡りの旅】

臭い温泉に入りたい! というわけで、硫黄系温泉を巡る旅の後編です。前回の記事では群馬県草津温泉をご紹…

二酸化マンガンの極小ナノサイズ化で次世代電池や触媒の性能を底上げ!

第649回のスポットライトリサーチは、東北大学大学院環境科学研究科(本間研究室)博士課程後期2年の飯…

日本薬学会第145年会 に参加しよう!

3月27日~29日、福岡国際会議場にて 「日本薬学会第145年会」 が開催されま…

TLC分析がもっと楽に、正確に! ~TLC分析がアナログからデジタルに

薄層クロマトグラフィーは分離手法の一つとして、お金をかけず、安価な方法として現在…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー