[スポンサーリンク]

化学者のつぶやき

過酸がC–H結合を切ってメチル基を提供する

[スポンサーリンク]

光増感剤とニッケル触媒を用いたC(sp3)–Hメチル化が開発された。合成終盤でのメチル化に威力を発揮する。

“マジックメチル”効果とC(sp3)–Hメチル化

生物活性分子へのメチル基の導入により、立体配座や溶解性が変化し、薬理活性が向上する現象は“マジックメチル”効果として知られる。例えば、メチル基の導入で肝毒性が低減したイブプロフェンはその好例である(図 1A)[1]。数あるメチル基の導入法の中でも、直截的なC(sp3)–Hメチル化は既存の医薬品を迅速にメチル化できる有用な手法である[2]。水素原子移動(HAT)およびクロスカップリングにより直截的C(sp3)–Hアルキル化を達成した先駆的な例として、MacMillanはイリジウム触媒/ニッケル触媒/HAT触媒の協働触媒系を報告した(図 1B)[3]。HATにより生じたアルキルラジカルは求電子剤とのクロスカップリングを経てアルキル化体を生成する。しかし、アルキル基の導入はヘテロ原子α位に限られる。
一方で、パーオキシドより生成するメチルラジカルは、種々の求電子剤とのクロスカップリングに用いられてきた(図 1C)[4]。メチルラジカルは、パーオキシドの均等開裂で得られるアルコキシラジカルのb-開裂によって生成する。
今回、ウィスコンシン大学マディソン校のStahlらはイリジウム触媒/ニッケル触媒とパーオキシドを用いたC(sp3)–Hメチル化を報告した(図 1D)。HATにより生じた炭素ラジカルと、パーオキシド由来のメチルラジカルがカップリングすることで、ベンジル位や窒素原子a位がメチル化された生成物を与える。

図1. (A) “マジックメチル” 効果 (B) Ir/Ni触媒を用いたC(sp3)–Hアルキル化 (C)過酸をメチル源とするカップリング反応(D) 今回の反応

 

“C(sp3)–H Methylation Enabled by Peroxide Photosensitization and Ni-Mediated Radical Coupling”
Vasilopoulos, A.; Krska, S. W.; Stahl, S. S. Science 2021, 372, 398–403.
DOI: 10.1126/science.abh2623

論文著者の紹介


研究者:Shannon S. Stahl
研究者の経歴:
–1992 B.S., University of Illinois at Urbana-Champaign, USA (Prof. Patricia A. Shapley)
–1997 Ph.D., California Institute of Technology, USA (Prof. John E. Bercaw)
1997–1999 Postdoc, Massachusetts Institute of Technology, USA (Prof. Stephen J. Lippard)
1999–2005 Assistant Professor of Chemistry, University of Wisconsin-Madison, USA
2005–2007 Associate Professor of Chemistry, University of Wisconsin-Madison, USA
2007– Professor of Chemistry, University of Wisconsin-Madison, USA
研究内容:遷移金属触媒を用いた空気酸化、ラジカル的C–H酸化とクロスカップリング、電気化学的手法を用いた有機合成

論文の概要

著者らはNiCl2·dme tButpy/Ir[dF(CF3)ppy]2(dtbbpy)PF6触媒存在下、アルキルアレーン1と過酸2に対し青色光を照射することで、メチル化体3が得られることを見いだした(図 2A)。

本反応は種々の基質のベンジル位や窒素原子a位のメチル化が可能である。N-(3-フェニルプロピル)フタルイミド(1a)を用いると対応するメチル化体3aを中程度の収率で与えた。ベンジル位と窒素原子a位が共存する1bでは窒素原子a位が優先してメチル化されるが、アンモニウム塩1cを基質とするとベンジル位のメチル化のみ進行する(3b and 3c)。
反応条件の検討過程で、著者らは光増感剤の三重項励起エネルギーが55 kcal/molを超えたときに1aの転化率が急増し、一定値を示すことを発見した(図 2B, 一部論文より引用)。

このことからパーオキシドの均等開裂は三重項エネルギー移動によるものだと示唆された。また、ニッケル触媒の役割を明らかするため種々の対照実験を実施した(図2C)。基質1a2の反応においてニッケル触媒を添加しない場合、3aの収率は大きく低下した。続いて、副生するメタンとエタン、3aの生成比を比較した。1aとニッケル触媒を添加しない場合、メタンが主生成物として得られた。

一方で1aのみ添加しない場合はエタンが主生成物となった。1a、ニッケル触媒存在下ではエタンが副生するものの、3aの生成が確認され、ニッケル触媒を介したカップリングの進行が示唆された。以上の結果より、ニッケル触媒がHATを抑制しラジカルカップリングを大幅に促進することが明らかとなった。

図2. (A) 基質適用範囲 (B) 光増感剤の評価 (C) ニッケル触媒の役割

以上、イリジウム触媒/ニッケル触媒を用いたC(sp3)–Hメチル化が開発された。合成終盤でのメチル基の導入により”マジックメチル”効果を発現させる一つの手法となりうる。

 参考文献

  1. Sun, S.; Fu, J. Methyl-Containing Pharmaceuticals: Methylation in Drug Design. Bioorg. Med. Chem. Lett. 2018, 28, 3283–3289. DOI: 10.1016/j.bmcl.2018.09.016
  2. Feng, K.; Quevedo, R. E.; Kohrt, J. T.; Oderinde, M. S.; Reilly, U.; White, M. S. Late-Stage Oxidative C(sp3)–H Methylation. Nature 2020, 580, 621–627. DOI: 1038/s41586-020-2137-8
  3. Le, C.; Liang, Y.; Evans, R. W.; Li, X.; MacMillan, D. W. C. Selective sp3 C–H Alkylation via Polarity-Match-Based Cross-Coupling. Nature 2017, 547, 79–83. DOI: 1038/nature22813
  4. (a) Aynetdinova, D.; Callens, M. C.; Hicks, H. B.; Poh, C. X. Y.; Shennan, B. D. A.; Boyd, A. M.; Lim, Z. H.; Leitch, J. A.; Dixon, D. J. Installing the “Magic Methyl” – C–H Methylation in Synthesis. Chem. Soc. Rev. 2021, 50, 5517–5563. DOI: 10.1039/D0CS00973C (b) Yan, G.; Borah, A. J.; Wang, L.; Yang, M. Recent Advances in Transition Metal-Catalyzed Methylation Reactions. Adv. Synth. Catal. 2015, 357, 1333–1350. DOI: 10.1002/adsc.201400984 (c) Chen, Y. Recent Advances in Methylation: A Guide for Selecting Methylation Reagents. Chem. Eur. J. 2019, 25, 3405–3439. DOI: 10.1002/chem.201803642
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. シグマ アルドリッチ構造式カタログの機能がアップグレードしたらし…
  2. 分子の聖杯カリックスアレーンが生命へとつながる
  3. 高分子マテリアルズ・インフォマティクスのための分子動力学計算自動…
  4. ハーバート・ブラウン―クロスカップリングを導いた師とその偉業
  5. 創薬・医療系ベンチャー支援プログラム”BlockbusterTO…
  6. 触媒的C-H活性化型ホウ素化反応
  7. 条件最適化向けマテリアルズ・インフォマティクスSaaS 「miH…
  8. PCに眠る未採択申請書を活用して、外部資金を狙う新たな手法

注目情報

ピックアップ記事

  1. ピロティ・ロビンソン ピロール合成 Piloty-Robinson Pyrrole Synthesis
  2. 槌田龍太郎 Ryutaro Tsuchida
  3. ナフサ、25年ぶり高値・4―6月国産価格
  4. 抗酸化能セミナー 主催:同仁化学研究所
  5. マシュー・ゴーント Matthew J. Gaunt
  6. 亜鉛–ヒドリド種を持つ金属–有機構造体による高温での二酸化炭素回収
  7. 果たして作ったモデルはどのくらいよいのだろうか【化学徒の機械学習】
  8. ミッドランド還元 Midland Reduction
  9. 触媒の貴金属低減化、劣化対策の技術動向【終了】
  10. 三種類の分子が自発的に整列した構造をもつ超分子共重合ポリマーの開発

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年7月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

第23回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

持続可能な社会の実現に向けて、太陽電池は太陽光発電における中心的な要素として注目…

有機合成化学協会誌2025年3月号:チェーンウォーキング・カルコゲン結合・有機電解反応・ロタキサン・配位重合

有機合成化学協会が発行する有機合成化学協会誌、2025年3月号がオンラインで公開されています!…

CIPイノベーション共創プログラム「未来の医療を支えるバイオベンチャーの新たな戦略」

日本化学会第105春季年会(2025)で開催されるシンポジウムの一つに、CIPセッション「未来の医療…

OIST Science Challenge 2025 に参加しました

2025年3月15日から22日にかけて沖縄科学技術大学院大学 (OIST) にて開催された Scie…

ペーパークラフトで MOFをつくる

第650回のスポットライトリサーチには、化学コミュニケーション賞2024を受賞された、岡山理科大学 …

月岡温泉で硫黄泉の pH の影響について考えてみた 【化学者が行く温泉巡りの旅】

臭い温泉に入りたい! というわけで、硫黄系温泉を巡る旅の後編です。前回の記事では群馬県草津温泉をご紹…

二酸化マンガンの極小ナノサイズ化で次世代電池や触媒の性能を底上げ!

第649回のスポットライトリサーチは、東北大学大学院環境科学研究科(本間研究室)博士課程後期2年の飯…

日本薬学会第145年会 に参加しよう!

3月27日~29日、福岡国際会議場にて 「日本薬学会第145年会」 が開催されま…

TLC分析がもっと楽に、正確に! ~TLC分析がアナログからデジタルに

薄層クロマトグラフィーは分離手法の一つとして、お金をかけず、安価な方法として現在…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー