[スポンサーリンク]

archives

取り扱いやすく保存可能なオキシム試薬(O-ベンゼンスルホニルアセトヒドロキサム酸エチル)

[スポンサーリンク]

概要

近畿大学の兵藤先生が開発されたO-ベンゼンスルホニルアセトヒドロキサム酸エチルは、不安定なヒドロキシルアミンの等価体となる有用で取り扱いやすいオキシム反応剤です。触媒量のブレンステッド酸存在下、温和な条件で反応し、①アルデヒド→ニトリル、②ケトン→第二級アミド、③アセチル基→(脱アセチルを伴う)アミノ基への変換が可能です。今回はこの便利な試薬についてご紹介します。

コンセプト

オキシム化合物の合成で用いられるヒドロキシルアミン誘導体は、不安定で爆発性があります。本試薬は、分子中の酸素原子が保護された構造を有していることから、安全に保存でき、取り扱いが容易です(Fig. 1)。触媒量の酸によって活性化すれば様々な変換反応に活用できます。

Fig. 1 安定で取り使いが容易なo-ベンゼンスルホニルアセトヒドロキサム酸エチル                  (CAS No. 2097677-32-0)

アルデヒド→ニトリル 1)

ニトリル化合物の合成は、芳香族ジアゾ化合物とCuCNを反応させるSandmeyer反応や、ハロゲン化アリールもしくはトシラートなどとCuCNの反応によるローゼンムント・フォンブラウン反応、ハロゲン化アルキルとKCNとの反応などがあります。また、アルデヒドを出発原料としたSchmidt反応もその一例です。

このO-ベンゼンスルホニルアセトヒドロキサム酸エチル(以下、オキシム反応剤)を用いると、アルデヒドからニトリルが温和な条件で合成できます。まず、オキシム反応剤と触媒量のブレンステッド酸から生じる活性化体(A)が、系中の水によってNH2OSO2Ph・HA(B)となり、アルデヒドとの反応によって生じる中間体(C)を経由して、最終的にニトリルに変換される反応メカニズムが提唱されています。(Fig. 2)

Fig. 2 提唱されている反応メカニズム(アルデヒド→ニトリル)

芳香族、脂肪族アルデヒドどちらも高収率で反応し、対応するニトリルを与えます。固体酸触媒であるAmberlyst-15でも反応し、20回のリサイクルも確認されています。また、ルイス酸(BF3・Et2O)では反応しません。脱水条件でも、Fig.2 中の中間体(B)が生成しないため反応しません。各基質を用いた反応例は以下の通りです。(Table 1)

Table 1

ケトン→第二級アミド 2)

カルボニル化合物からアミドを合成する方法は、縮合剤を用いたカルボン酸とアミンとの反応など数多く知られています。例えばカルボニル化合物とヒドロキシルアミンとの反応で合成されるケトオキシムのベックマン転移や、エステルにNaOMeを作用させてアミンと反応させる方法3)などが挙げられます。(Fig. 3)

Fig. 3  カルボニル化合物からアミドへの変換例

今回のオキシム反応剤を用いると、温和な条件でケトンから第二級アミドが合成できます。まず、オキシム反応剤と触媒量のブレンステッド酸から生じる活性化体(A)から、系中の水によってNH2OSO2Ph・HA (B)が発生します。これがケトンと反応して生じた中間体(C)、さらにベックマン転移による中間体(D)へと変換されて水と反応、さらに互変異性によって目的物の第二級アミドが生成する反応メカニズムが提唱されています。(Fig. 4)

Fig. 4  提唱されている反応メカニズム(ケトン→第二級アミド)

芳香族、脂肪族ケトンのどちらも高収率で反応し、対応する第二級アミドを与えます。主な反応例は以下の通りです。(Table 2)

Table 2

アセチル基→(脱アセチルを伴う)アミノ基への変換

芳香族アミンの合成においては、様々な出発物質からの変換法が知られています。例えば、ニトロ基の還元、ハロゲン化アリールからのBuchwald−Hartwig反応、またC-H活性化反応による導入(金属触媒4)、フォトレドックス反応5)、電気化学6))が挙げられます。

今回のオキシム反応剤を用いると、アセチル基を持つ芳香族/脂肪族化合物を出発物質とした(脱アセチルを伴う)アミンの合成が可能です。反応は、オキシム反応剤が溶媒のMeOHとエステル交換し、ブレンステッド酸との反応により生じた活性化体(A)が、加水分解などでNH2OSO2Ph・HA (B)に変換され、アセチル基を有する化合物との脱水反応で生じる中間体(C)からベックマン転移で生成した中間体(D)が、さらにMeOHと反応してN-aryl acetimidate(E)に変換されます。ここから目的物であるアミンへと変換されるメカニズムが提唱されています。(Fig. 5)

Fig. 5  提唱されている反応メカニズム(アセチル基→アミノ基)

各種アセチル基を持つ芳香族/脂肪族化合物からは、医薬品、電子材料等のビルディングブロックに相当する化合物が合成できます。(Table 3)

Table 3

おわりに

今回は、触媒量のブレンステッド酸を用いる温和な条件で、各種の変換反応が可能なオキシム反応剤をご紹介しました。機能性有機材料や、全合成における工程の短縮など、いろいろな場面で有効な試薬ですので、ぜひご活用ください!詳しくは関連ページからご確認いただけます。

参考文献

1)Hyodo, K., Togashi, K., Oishi, N., Hasegawa, G., Uchida, K. : Org. Lett., 19, 3005 (2017). DOI: 10.1021/acs.orglett.7b01263

2)Hyodo, K., Hasegawa, G., Oishi, N., Kuroda, K., Uchida, K. : J. Org. Chem., 83, 13080 (2018).DOI: 10.1021/acs.joc.8b01810

3)Ohshima, T., Hayashi, Y., Agura, K., Fujii, Y., Yoshiyama, A., Mashima, K. : Chem. Commun., 48, 5434 (2012). DOI: 10.1039/C2CC32153J

4)Tezuka, N., Shimojo, K., Hirano, K., Komagawa, S., Yoshida, K., Wang, C., Miyamoto, K., Saito, T., Takita, R., Uchiyama, M. : J. Am. Chem. Soc., 138, 9166 (2016).

DOI:10.1021/jacs.6b03855

5)Romero, N. A., Margrey, K. A., Nicholas, E., Tay, N. E., Nicewicz, D. A. : Science , 349, 1326 (2015). DOI: 10.1126/science.aac9895

6)Morofuji, T., Shimizu, A., Yoshida, J. : J. Am. Chem. Soc.,135, 5000 (2013).

DOI:10.1021/ja402083e

関連サイト

 

 

 

 

Avatar photo

富士フイルム和光純薬

投稿者の記事一覧

「次の科学のチカラとなり、人々の幸せの源を創造する」
みなさまの研究開発を支えるチカラとなるべく、
これからも高い技術とクオリティで、次代のニーズにお応えします。
Twitterでの情報提供を始めました。

関連記事

  1. 2017年(第33回)日本国際賞受賞者 講演会
  2. ポリマーを進化させる!機能性モノマーの力
  3. アルコールをアルキル化剤に!ヘテロ芳香環のC-Hアルキル化
  4. 国際化学オリンピックのお手伝いをしよう!
  5. 年に一度の「事故」のおさらい
  6. 1,4-ジ(2-チエニル)-1,4-ブタンジオン:1,4-Di(…
  7. 創薬におけるモダリティの意味と具体例
  8. ベンジル位アセタールを選択的に酸素酸化する不均一系触媒

注目情報

ピックアップ記事

  1. 中高生・高専生でも研究が学べる!サイエンスメンタープログラム
  2. 毒を持ったタコにご注意を
  3. 非古典的カルボカチオンを手懐ける
  4. シリル系保護基 Silyl Protective Group
  5. 量子コンピューターによるヒュッケル分子軌道計算
  6. 導電性高分子の基礎、技術開発とエネルギーデバイスへの応用【終了】
  7. 専門家要らず?AIによる圧倒的高速なスペクトル解釈
  8. 【書評】奇跡の薬 16 の物語 ペニシリンからリアップ、バイアグラ、新型コロナワクチンまで
  9. (+)-MTPA-Cl
  10. チアミン (thiamin)

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年8月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

植物繊維を叩いてアンモニアをつくろう ~メカノケミカル窒素固定新合成法~

Tshozoです。今回また興味深い、農業や資源問題の解決の突破口になり得る窒素固定方法がNatu…

自己実現を模索した50代のキャリア選択。「やりたいこと」が年収を上回った瞬間

50歳前後は、会社員にとってキャリアの大きな節目となります。定年までの道筋を見据えて、現職に留まるべ…

イグノーベル賞2024振り返り

ノーベル賞も発表されており、イグノーベル賞の紹介は今更かもしれませんが紹介記事を作成しました。 …

亜鉛–ヒドリド種を持つ金属–有機構造体による高温での二酸化炭素回収

亜鉛–ヒドリド部位を持つ金属–有機構造体 (metal–organic frameworks; MO…

求人は増えているのになぜ?「転職先が決まらない人」に共通する行動パターンとは?

転職市場が活発に動いている中でも、なかなか転職先が決まらない人がいるのはなぜでしょう…

三脚型トリプチセン超分子足場を用いて一重項分裂を促進する配置へとペンタセンクロモフォアを集合化させることに成功

第634回のスポットライトリサーチは、 東京科学大学 物質理工学院(福島研究室)博士課程後期3年の福…

2024年の化学企業グローバル・トップ50

グローバル・トップ50をケムステニュースで取り上げるのは定番になっておりましたが、今年は忙しくて発表…

早稲田大学各務記念材料技術研究所「材研オープンセミナー」

早稲田大学各務記念材料技術研究所(以下材研)では、12月13日(金)に材研オープンセミナーを実施しま…

カーボンナノベルトを結晶溶媒で一直線に整列! – 超分子2層カーボンナノチューブの新しいボトムアップ合成へ –

第633回のスポットライトリサーチは、名古屋大学理学研究科有機化学グループで行われた成果で、井本 大…

第67回「1分子レベルの酵素活性を網羅的に解析し,疾患と関わる異常を見つける」小松徹 准教授

第67回目の研究者インタビューです! 今回は第49回ケムステVシンポ「触媒との掛け算で拡張・多様化す…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP