[スポンサーリンク]

一般的な話題

分子の磁石 “化学コンパス” ~渡り鳥の磁場観測メカニズム解明にむけて~

[スポンサーリンク]

渡り鳥を含む多くの動物は方位を正確に把握する手段のひとつとして”地球の磁場”を知覚していると言われています。

生物物理学的メカニズムは未だ十分に理解されていないものの、長年の動物学者や化学者、物理学者らの活発な研究により、そのメカニズムが少しずつ明らかとなってきております。今回はこの磁気感受における複雑な生体内の現象を、モデル分子を用いて理解を深めている研究の一端について触れてみたいと思います。

鳥類の磁気感受メカニズムの仮説

鳥類が磁気を感じるための機構についていくつか仮説がありますが、網膜に存在する青色光受容体クリプトクロムと呼ばれるたんぱく質の一種であるフラビンアデニンジヌクレオチド (FAD) が磁気受容に関わる事が報告されて[1,2]以来、過去1978年にSchulten, K. らによって提案された光電子移動反応により生成される磁気的に敏感なフリーラジカルに基づく仮説、いわゆるラジカルペア機構 (Radical Pair Mechanism; RPM)[3] が動物の磁気感受のメカニズムにおいて特に注目を集めています。

Fig. 1. RPMにおける鳥の目の磁気受容の識別様式の概略図. (出典: [4]一部改編 詳細はこちら参照)

“RPM” 以外の説に、”マグネタイト”と呼ばれる体内に存在する極めて小さな磁石粒子を方位磁針とする仮説もあり[5]、現在、RPMとともにこの二説が動物の磁気受容の議論における有力仮説となっています。

ラジカルペア機構の検証課題

RPMに関わるタンパク質はFADの青色光励起により生成される空間的の離れたFADと対ラジカルのペアとされています。[6] このRPMの現象理解において、特に地球の磁場 (ca. 30-65 μT) と同じくらい弱い磁場下での反応を分光観測することが重要されていますが、in vitro での磁場効果は、単離された無傷のタンパク質に対し地球の約20倍の磁界でのみ観察されており、低磁場下の実験的証拠を提供している研究はほとんどありません。

DNAベースの磁気センサーの提案は、注目に値するものの、生成されるラジカルペアの寿命の短さや、ラジカルパートナー間の距離の近さなど、重要な問題があり、どちらも(低)電磁界に敏感なラジカルペアの検証において適しておりません。

Fig.2. FADの光励起サイクルと分子状酸素ラジカルを含んだ想定反応スキームの概略図.(出典: [7]

そこで光化学反応が渡り鳥の磁気センサーの基礎を形成できるという原理を確立するため、最近の研究ではモデル分子を適用するケースもあります。

CPF分子の特徴と適応例

DNA由来の磁気センサーに比べ、ハンドリング容易かつ光誘起ラジカルペアの寿命が比較的長く、地球の磁場と同じくらい弱い磁場に敏感な ”カロテノイド-ポルフィリン-フラーレン系分子 (CPF)” がモデル分子として提唱されております。[1,8,9]

Fig. 3. カロテノイド-ポルフィリン-フラーレンモデル系の分子 (CPF). (出典: [8] 一部改編)

では、このCPF分子の特徴について見ていきましょう。
一般に、磁場効果はドナーとアクセプターが溶液中で自由に拡散するラジカルペアシステムもしくは分子内におけるラジカル同士が柔軟な鎖によって結合されて大きな内部運動が容易であるラジカルペアの組み合わせで、観測が可能となるとされております。モデル分子であるCPF分子は光励起より生じる一次ドナーが分子中におけるドナー-アクセプター種を介して、最終的なアクセプターに移動する多段階電子移動を利用し、ラジカルペアを高収率で形成することができるといった特徴があります。[10,11] 加えて、本CPF分子は合成が簡便であり、有機溶媒に非常に溶けやすくハンドリング性に優れているされております。

つぎに、励起過程における状態を少し詳しく見てみましょう。
下図のように、532 nmの励起光にてまずポルフィリンが CSPF に光励起された後、すみやかに分子内電子移動が行われ、最初にピコ秒の寿命をもつ一次ラジカルペアCS[P•+F•–] が生成されます。それに続く電子移動により、おおよそ1マイクロ秒の寿命をもつ第二のラジカルペア [C•+PF•–] が形成されます。温度や溶媒などの雰囲気によりますが、第二のラジカルペアは主に一重項状態で存在しており、三重項状態で生成されるラジカルペアはわずかとされています。このとき、磁場の存在により一重項状態と三重項状態の相互変換過程が影響を受け、再結合するラジカルペアの割合が変化するとされております。[9]

Fig. 4. CPF分子のエネルギーダイアグラムと電子スピン状態. (出典: [9])

化学コンパスとしての性質

光化学的に形成されたラジカルペアの寿命が磁場によって変化することを実証し、磁気センサー、すなわち”化学コンパス”としての動作に不可欠な異方性の化学的応答性が評価されます。これまでは冒頭で述べたように多くの実験的な調査では地球の低磁場よりも数桁強い試験環境で行われているため、弱い磁場に対する感度についての知見はまだまだ研究報告が少ないとされていました。

Kerpal, C. らはこのCPF分子を用いて比較的弱い磁場条件 (50-200 μT)での化学コンパスの応答性について調査し、ついに磁気応答性を有するラジカルペアが地球レベルの低磁場領域でも機能を発現することを初めて実証したと2019年のnature communicationsにて報告しました[8]

Fig.5. 実験装置の概略図と磁場効果.(出典: [8]一部改編)

弱い磁場は主に S–T0相互変換効率を高め、より強い磁場はゼーマン効果を介してラジカルの再結合に影響を与え、一重項–三重項ミクシングを抑制させると言われてます。[8,12]

おわりに

鳥類の磁場感知メカニズムの概要と最近の研究例について見てきました。動物たちがもつ複雑な”化学コンパス”についても、CPFのようなモデル分子を駆使することで少しずつ紐解かれつつあります。検証が困難な世の中の未知に対し、分子設計とそのアプローチの仕方で取り組むことができるのが化学の醍醐味のひとつですね。

参考文献

  1. Maeda, K., et al., Nature, 2008, 453, 387. DOI: 10.1038/nature06834
  2. Ahmad, M., et al., Nature, 1993, 366, 162–166. DOI: 10.1038/366162a0
  3. Schulten, K., et al., Z. Phys. Chem., 1978, 111, 1–5. DOI: 10.1524/zpch.1978.111.1.001
  4. Gauger, EM., et al., Phys. Rev. Lett., 2011, 106, 040503. DOI: 10.1103/PhysRevLett.106.040503
  5. Beason, R C., et al., Nature, 1984, 309, 151–153. DOI: 10.1038/309151a0
  6. 前田光憲, 化学と教育, 2016, 64.
  7. Schulten. K., et al., Biophys. J., 2009, 96, 4804–4813. DOI: 10.1016/j.bpj.2009.03.048
  8. Kerpal, C., et al., Nat. Commun., 2019, 10, 1-7. DOI: 10.1038/s41467-019-11655-2
  9. Maeda, K., et al., Chem. Commun., 2011, 47, 6563–6565. DOI: 10.1039/c1cc11625h
  10. Kodis, G., et al., J. Phys. Org. Chem., 2004, 17, 724–734. DOI: 10.1002/poc.787
  11. Kuciauskas, D., et al., J. Am. Chem. Soc., 1998, 120, 10880-10886. DOI:10.1021/ja981848e
  12. Lewis, A.M., et al., J. Chem. Phys., 2018, 149, 034103. DOI: 10.1063/1.5038558

関連書籍

[amazonjs asin=”B08639CC2V” locale=”JP” title=”Gosky 双眼鏡 10倍 10×42倍率 Bak4 高倍率 オペラグラス 目が疲れにくい 人気 バードウォッチング 天体観測 コンサート スポーツ観戦 舞台鑑 オリンピック用 防水 高画質 携帯用バッグと日本語説明書付き”] [amazonjs asin=”B00N3NHJK0″ locale=”JP” title=”Vixen コンパス オイル式コンパス ハンディオイルコンパス 42026-1″]

関連リンク

〇Forbes Japan: 科学が解明、渡り鳥たちの「驚異的方向感覚」のミステリー (https://forbesjapan.com/articles/detail/20545)

 

Avatar photo

ちおふぇん

投稿者の記事一覧

世の中の課題に対して分子レベルでのモノづくりからの解決を夢見る有機材料屋さん。
興味の対象は構造と物性およびそのその発現メカニズム。
好きな読み物は月刊化学のシリーズ連載。

関連記事

  1. ポンコツ博士の海外奮闘録⑬ ~博士,コロナにかかる~
  2. 科学は探究心を与え続けてくれるもの:2016 ロレアル–ユネスコ…
  3. 素粒子と遊ぼう!
  4. 学術オンラインコンテンツ紹介(Sigma-Aldrichバージョ…
  5. 特許情報から読み解く大手化学メーカーの比較
  6. 高収率・高選択性―信頼性の限界はどこにある?
  7. オペレーションはイノベーションの夢を見るか? その2
  8. オゾンと光だけでアジピン酸をつくる

注目情報

ピックアップ記事

  1. ニッケル錯体触媒の電子構造を可視化
  2. プロペランの真ん中
  3. (+)-2,2′-メチレンビス[(3aR,8aS)-3a,8a-ジヒドロ-8H-インデノ[1,2-d]オキサゾール] : (+)-2,2′-Methylenebis[(3aR,8aS)-3a,8a-dihydro-8H-indeno[1,2-d]oxazole]
  4. 化学者のためのエレクトロニクス講座~次世代配線技術編
  5. 企業の研究を通して感じたこと
  6. 永田試薬 Nagata Reagent
  7. YMC-DispoPackAT 「ケムステを見た!!」 30%OFFキャンペーン
  8. ノンコーディングRNA 〜 RNA分子の全体像を俯瞰する〜
  9. カチオン性三核Pd触媒でC–I結合選択的にカップリングする
  10. 抗生物質の誘導体が神経難病に有効 名大グループ確認

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年7月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

硫黄と別れてもリンカーが束縛する!曲がったπ共役分子の構築

紫外光による脱硫反応を利用することで、本来は平面であるはずのペリレンビスイミド骨格を歪ませることに成…

有機合成化学協会誌2024年11月号:英文特集号

有機合成化学協会が発行する有機合成化学協会誌、2024年11月号がオンライン公開されています。…

小型でも妥協なし!幅広い化合物をサチレーションフリーのELSDで検出

UV吸収のない化合物を精製する際、一定量でフラクションをすべて収集し、TLCで呈色試…

第48回ケムステVシンポ「ペプチド創薬のフロントランナーズ」を開催します!

いよいよ本年もあと僅かとなって参りましたが、皆様いかがお過ごしでしょうか。冬…

3つのラジカルを自由自在!アルケンのアリール–アルキル化反応

アルケンの位置選択的なアリール–アルキル化反応が報告された。ラジカルソーティングを用いた三種類のラジ…

【日産化学 26卒/Zoomウェビナー配信!】START your ChemiSTORY あなたの化学をさがす 研究職限定 キャリアマッチングLIVE

3日間で10領域の研究職社員がプレゼンテーション!日産化学の全研究領域を公開する、研…

ミトコンドリア内タンパク質を分解する標的タンパク質分解技術「mitoTPD」の開発

第 631 回のスポットライトリサーチは、東北大学大学院 生命科学研究科 修士課程2…

永木愛一郎 Aiichiro Nagaki

永木愛一郎(1973年1月23日-)は、日本の化学者である。現在北海道大学大学院理学研究院化学部…

11/16(土)Zoom開催 【10:30~博士課程×女性のキャリア】 【14:00~富士フイルム・レゾナック 女子学生のためのセミナー】

化学系の就職活動を支援する『化学系学生のための就活』からのご案内です。11/16…

KISTEC教育講座『中間水コンセプトによるバイオ・医療材料開発』 ~水・生体環境下で優れた機能を発揮させるための材料・表面・デバイス設計~

 開講期間 令和6年12月10日(火)、11日(水)詳細・お申し込みはこちら2 コースの…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP