[スポンサーリンク]

化学者のつぶやき

技あり!マイルドにエーテルを切ってホウ素で結ぶ

[スポンサーリンク]

亜鉛/ニッケル触媒によるアルキルエーテルのC(sp3)–O結合へのホウ素挿入反応が開発された。得られるホウ素挿入体の反応性を生かし、アルキルエーテルの幅広い誘導体化が可能である。

アルキルエーテルのC(sp3)–O結合活性化とホウ素挿入反応

アルキルエーテルは、容易に入手可能であり、数多くの天然物や医農薬品にみられる構造である[1]。そのC(sp3)–O結合切断を伴う変換反応は、既存の化合物の多様性創出を可能とする強力な手法となりうる。しかし、C(sp3)–O結合は化学的安定性が高いため、通常その切断には強酸の使用や高温など過酷な条件を要する[2]。そのため、より穏和な条件で進行するエーテル変換反応の開発が求められる[3]。近年、比較的穏和な条件で進行する反応として、遷移金属触媒に対するC–O結合の酸化的付加を鍵とするC–O結合変換反応が複数報告された[3]。しかし、これらはほとんどがC(sp2)–O結合やベンジル位やアリル位C(sp3)–O結合に制限される。また、C(sp2)–O結合に限られるが、2016年に依光らは、ニッケル触媒によるベンゾフランのC2–O結合へのホウ素挿入反応を開発した(図1A)[4]。本C–O結合のホウ素挿入反応により得られる生成物は、一炭素増炭やC–アリール化など多様な変換ができ、有用である。ベンジル位やアリル位以外のC(sp3)–O結合へのホウ素挿入反応は、1984年にWestらにより報告されたシリルボリレンの挿入反応の一例のみである(図1B)[5]。しかし、本報告では実施例がTHFのみであり、さらに–196 °Cと極低温であるため有用性に課題が残る。
今回、シカゴ大学のDong教授とピッツバーグ大学のLiu准教授らは、ジブロモボランと亜鉛およびニッケル触媒を用いてアルキルエーテルのC(sp3)–O結合へのホウ素挿入反応の開発に成功した(図1C)。反応機構解明研究より、ジブロモボランと亜鉛がC(sp3)–O結合を切断した後に、ニッケル触媒によるC(sp3)–B結合形成によってホウ素が挿入されることが示唆された。

図1 A. ベンゾフランへのホウ素挿入反応 B. THFへのホウ素挿入反応 C. 今回の反応

 

“Boron insertion into alkyl ether bonds via zinc/nickel tandem catalysis
Lyu, H.; Kevlishvili, I.; Yu, X.; Liu, P.; Dong, G. Science 2021, 372, 175–182.
DOI: 10.1126/science.abg5526

論文著者の紹介

研究者:Guangbin Dong (董广彬)

研究者の経歴:
1999–2003 B.Sc. in Chemistry, Peking University, China (Prof. Z. Yang and Prof. J. Chen)
2004–2009 Ph.D. in Chemistry, Stanford University, USA (Prof. B. M. Trost)
2009–2011 Camile and Henry Dreyfus Postdoctoral Fellow, California Institute of Technology, USA (Prof. R. H. Grubbs)
2011–2016 Assistant Professor, University of Texas at Austin, USA
2016– Professor of Chemistry, The University of Chicago, USA

研究内容:C–H/C–C結合活性化反応の開発、天然物合成

研究者:Peng Liu

研究者の経歴:
1999–2003 B.Sc. in Chemistry, Peking University, China (Prof. W. Liu)
2004–2006 M.Sc. in Chemistry, University of Guelph, Canada (Prof. J. D. Goddard)
2006–2010 Ph.D. in Chemistry, University of California, Los Angeles, USA (Prof. K. N. Houk)
2010–2014 Postdoc, University of California, Los Angeles, USA (Prof. K. N. Houk)
2014–2019 Assistant Professor, University of Pittsburgh, USA
2019– Associate Professor, University of Pittsburgh, USA

研究内容:量子化学計算による反応機構解析および触媒開発

論文の概要

本反応は、Ni-1触媒と亜鉛存在下、アルキルエーテル1とジブロモメシチルボラン2をトルエン中60 °Cで反応させることでホウ素挿入体3を与える(図2A)。本反応はC(sp3)–O結合選択的に進行し、ジヒドロベンゾフランを用いた場合にはC2–O結合にホウ素が挿入されたオキサボリナン3aが高収率で得られる。反応の官能基許容性は高く、ブロモ(3b)やボロン酸エステル(3c)、スチリル基(3d)を損うことなく反応が進行する。5員環アルキルエーテルの他にも、4員環(3e)や6員環(3f)および鎖状エーテル(3g)が適用可能である。
本反応で得られるホウ素挿入体3を種々誘導体化することで分子“編集”が可能である(図2B)。例えば、テトラヒドロフラン1hから得られるオキサボリナン3hをトリフルオロボラート塩に変換した後に、ベンジルアジドと反応させることで、エーテル酸素原子を窒素原子に交換したピロリジン4が得られた。また、オキサボリナン3をジクロロメチルリチウムと塩化亜鉛を用いて1,2-メタレート転位させた後に、酸化および光延反応することで環状エーテルの環拡大に成功した。この際、用いるジブロモボラン上の置換基をメシチル基からフェニル(5a)やヘキシル(5b)に変更しても反応は進行する。
機構解明実験およびDFT計算より、著者らは以下の反応機構を提唱した(図2C)。はじめに、12、2価の亜鉛が反応してIM1となる。その後、SN2型のC(sp3)–O結合開裂によってIM2が生じる。IM2のB–Br結合がニッケル触媒に酸化的付加してIM3となり、これが亜鉛に還元されてIM4となる。IM4が分子内酸化的付加することでIM6を与え、還元的脱離を経て3とNi(I)を生成する。最後にNi(I)が亜鉛で還元されてニッケル触媒が再生する。なお、IM4の分子内酸化的付加に関しては、SN2型、もしくはIM5を経由するラジカル型の二通りの機構がDFT計算により示唆された。

図 2 A. 基質適用範囲B. 誘導体化 C. 推定反応機構

 

以上、アルキルエーテルのホウ素挿入反応が初めて開発された。天然物や医薬品に頻出のアルキルエーテル部位の分子“編集”を可能とした本反応は、既存の合成戦略を刷新しうる可能性を秘める。

参考文献

  1. Huber, G. W.; Iborra, S.; Corma, A. Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering. Chem. Rev. 2006, 106, 4044–4098. DOI: 10.1021/cr068360d
  2. Ranu, B. C.; Bhar, S. Dealkylation of Ethers. A Review. Org. Prep. Proced. Int. 1996, 28, 371–409. DOI: 10.1080/00304949609356549
  3. (a) Cornella, J.; Zarate, C.; Martin, R. Metal-Catalyzed Activation of Ethers via C–O Bond Cleavage: A New Strategy for Molecular Diversity. Chem. Soc. Rev. 2014, 43, 8081–8097. DOI: 10.1039/C4CS00206G (b) Su, B.; Cao, Z. C.; Shi, Z. J. Exploration of Earth-Abundant Transition Metals (Fe, Co, and Ni) as Catalysts in Unreactive Chemical Bond Activations. Acc. Chem. Res. 2015, 48, 886–896. DOI: 10.1021/ar500345f (c) Rosen, B. M.; Quasdorf, K. W.; Wilson, D. A.; Zhang, N.; Resmerita, A.-M.; Garg, N. K.; Percec, V. Nickel-Catalyzed Cross-Couplings Involving Carbon–Oxygen Bonds. Chem. Rev.2011, 111, 1346–1416. DOI: 10.1021/cr100259t (d) Tollefson, E. J.; Hanna, L. E.; Jarvo, E. R. Stereospecific Nickel-Catalyzed Cross-Coupling Reactions of Benzylic Ethers and Esters. Acc. Chem. Res. 2015, 48, 2344–2353. DOI: 10.1021/acs.accounts.5b00223
  4. Saito, H.; Otsuka, S.; Nogi, K.; Yorimitsu, H. Nickel-Catalyzed Boron Insertion into the C2–O Bond of Benzofurans. J. Am. Chem. Soc. 2016, 138, 15315–15318. DOI: 10.1021/jacs.6b10255
  5. Pachaly, B.; West, R. Photochemical Generation of Triphenylsilylboranediyl (C6H5)3SiB: from Organosilylboranes. Angew. Chem., Int. Ed. 1984, 23, 454–455. DOI: 10.1002/anie.198404541
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 【1月開催】第五回 マツモトファインケミカル技術セミナー 有機チ…
  2. カーボンナノチューブを有機色素で染めて使う新しい光触媒技術
  3. 第20回ケムステVシンポ『アカデミア創薬 A to Z』を開催し…
  4. 前人未踏の超分子構造体を「数学のチカラ」で見つけ出す
  5. ゴードン会議に参加して:ボストン周辺滞在記 PartI
  6. 結合をアリーヴェデルチ! Agarozizanol Bの全合成
  7. アスピリンから多様な循環型プラスチックを合成
  8. 大学生向け”オイシイ”情報の集め方

注目情報

ピックアップ記事

  1. 第167回―「バイオ原料の活用を目指した重合法の開発」John Spevacek博士
  2. 【好評につき第二弾】Q&A型ウェビナー マイクロ波化学質問会
  3. 抗生物質の話
  4. セブンシスターズについて① ~世を統べる資源会社~
  5. ロナルド・ブレズロウ賞・受賞者一覧
  6. 熱すると縮む物質を発見 京大化学研
  7. 世界最高の活性を示すアンモニア合成触媒の開発
  8. 生きた細胞内のヘムを検出する蛍光プローブ
  9. デュアルディスプレイDNAコード化化合物ライブラリーの改良法
  10. カルボン酸だけを触媒的にエノラート化する

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年6月
 123456
78910111213
14151617181920
21222324252627
282930  

注目情報

最新記事

有機合成化学協会誌2024年12月号:パラジウム-ヒドロキシ基含有ホスフィン触媒・元素多様化・縮環型天然物・求電子的シアノ化・オリゴペプチド合成

有機合成化学協会が発行する有機合成化学協会誌、2024年12月号がオンライン公開されています。…

「MI×データ科学」コース ~データ科学・AI・量子技術を利用した材料研究の新潮流~

 開講期間 2025年1月8日(水)、9日(木)、15日(水)、16日(木) 計4日間申込みはこ…

余裕でドラフトに収まるビュッヒ史上最小 ロータリーエバポレーターR-80シリーズ

高性能のロータリーエバポレーターで、効率良く研究を進めたい。けれど設置スペースに限りがあり購入を諦め…

有機ホウ素化合物の「安定性」と「反応性」を両立した新しい鈴木–宮浦クロスカップリング反応の開発

第 635 回のスポットライトリサーチは、広島大学大学院・先進理工系科学研究科 博士…

植物繊維を叩いてアンモニアをつくろう ~メカノケミカル窒素固定新合成法~

Tshozoです。今回また興味深い、農業や資源問題の解決の突破口になり得る窒素固定方法がNatu…

自己実現を模索した50代のキャリア選択。「やりたいこと」が年収を上回った瞬間

50歳前後は、会社員にとってキャリアの大きな節目となります。定年までの道筋を見据えて、現職に留まるべ…

イグノーベル賞2024振り返り

ノーベル賞も発表されており、イグノーベル賞の紹介は今更かもしれませんが紹介記事を作成しました。 …

亜鉛–ヒドリド種を持つ金属–有機構造体による高温での二酸化炭素回収

亜鉛–ヒドリド部位を持つ金属–有機構造体 (metal–organic frameworks; MO…

求人は増えているのになぜ?「転職先が決まらない人」に共通する行動パターンとは?

転職市場が活発に動いている中でも、なかなか転職先が決まらない人がいるのはなぜでしょう…

三脚型トリプチセン超分子足場を用いて一重項分裂を促進する配置へとペンタセンクロモフォアを集合化させることに成功

第634回のスポットライトリサーチは、 東京科学大学 物質理工学院(福島研究室)博士課程後期3年の福…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP