[スポンサーリンク]

化学者のつぶやき

内部アルケン、ついに不斉ヒドロアミノ化に屈する

[スポンサーリンク]

不活性内部アルケンとアミンとの不斉ヒドロアミノ化反応が報告された。新規なカチオン性キラルイリジウム触媒とアミノ化剤に2-アミノピリジンを用いたことが成功の鍵である

遷移金属触媒によるアルケンの不斉ヒドロアミノ化

アルケンに対するアミンN–H結合の触媒的不斉付加反応、すなわちヒドロアミノ化は、高い原子効率で有用なキラルアミンを合成できる。これまで、パラジウムやニッケル、イリジウムなど種々のキラル遷移金属触媒が開発され、共役アルケンや末端アルケン、歪んだアルケンの不斉ヒドロアミノ化が達成された(図1A)[1]。しかし、内部アルケンに対する手法の開発は挑戦的な課題として残されている。これは、内部アルケンが遷移金属触媒に対して配位しにくいこと、触媒がアルケンの異性化を併発し、エナンチオ選択性や位置選択性が低下することが原因である。変法としてBuchwaldらは、キラル銅触媒とシラン還元剤存在下、求電子的アミノ化剤を用いる「形式的な」内部アルケンの不斉ヒドロアミノ化を報告した(図1B)[2]。しかし、この手法は原子効率に課題を残す。
本論文の著者であるHartwigらは、これまでにイリジウム触媒を用いたヒドロアミノ化を数例報告している[3]。イリジウム触媒によるヒドロアミノ化は、①N–H結合の酸化的付加、②アルケンの配位挿入、③還元的脱離を経て進行する。2012年に柴田らは、イリジウム触媒をカチオン性にして②を、また配向性効果をもつ2-アミノピリジンをアミノ化剤として①を促進することで、末端アルケンの不斉ヒドロアミノ化を報告した(図1C)[4]。しかし、エナンチオ選択性は中程度であり、さらに不活性内部アルケンには適用できなかった。
今回Hartwigらは、イリジウム触媒による不活性内部アルケンの不斉ヒドロアミノ化を達成した(図1D)。柴田らと類似の戦略に則り、新規二座ホスフィン配位子を用いたことが本成功の鍵である。

図1. (A) 金属触媒による不斉ヒドロアミノ化 (B) 内部アルケンの不斉ヒドロアミノ化 (C) カチオン性イリジウムと2-アミノピリジンの利用

 

“Catalytic asymmetric addition of an amine N–H bond across internal alkenes”
Xi, Y.; Ma, S.; Hartwig, J. F. Nature 2020
DOI: 10.1038/s41586-020-2919-z

論文著者の紹介

研究者:John F. Hartwig 
研究者の経歴:
1986 BSc, A. B. Princeton University, USA (Prof. Maitland Jones Jr.)
1990 Ph.D., University of California, Berkeley, USA (Prof. Richard A. Anderson and Prof. Robert G. Bergman)
1990-1992 Postdoc, Massachusetts Institute of Technology, USA (Prof. Stephen J. Lippard)
1992-1996 Assistant Professor, Yale University, USA
1996-1998 Associate Professor, Yale University, USA
1998-2006 Professor, Yale University, USA
2006-2011 Professor, University of Illinoi, Urbana-Champaign, USA
2011- Professor, University of California, Berkeley, USA
研究内容:遷移金属触媒を用いた反応開発と機構解明: C–H官能基化、ヒドロ官能基化、クロスカップリング

論文の概要

著者らはカチオン性Ir/(S)-DTBM-SEGPHOS触媒存在下、(Z)-オクト-4-エン(2)を用いて、まずアミノピリジン1の効果を調査した(図2A)。その結果、2-アミノピリジン(1a)では反応が進行しなかったが、2-アミノ-6-メチルピリジン(1b)を用いるとヒドロアミノ化が進行し、3, 4, 5の混合物が収率53%で得られることがわかった。アミノ化剤に1bを用いて、次に触媒を検討した(図2B)。触媒の対アニオンをトリフルオロメタンスルホンイミド(NTf2)とし、配位子に新たに開発した(R)-TMS-SYNPHOS(L2)を用いた際に最も高い収率および位置・エナンチオ選択性で3bを与えた。著者らはこれを最適条件としアルケンの基質一般性を調査した(図2C)。対称な鎖状Z-アルケンからキラルアミン3baが高収率かつ高エナンチオ選択性で得られた(3ba)。環状アルケンとしてシクロペント-3-エンを用いても不斉ヒドロアミノ化が進行し、シクロペンチルアミン(3bb, 3bc)を良好な収率で与えた。3bcではトランス体が優先して得られる。極性官能基をもつ非対称アルケンでは、その官能基から遠い炭素にアミンが付加した化合物を優先的に与えた(3bd)。本反応により導入されるピリジルアミノ基は白金/酸触媒条件で水素添加した後、水素化ホウ素ナトリウムを作用させることで一級アミンへと誘導できる(図2D)。

図2. (A) ピリジルアミンの検討 (B) 触媒検討 (C) 基質適用範囲 (D) 一級アミンへの誘導

以上、カチオン性キラルイリジウム触媒を用いた不活性内部アルケンの不斉ヒドロアミノ化が開発された。今後、より高活性な触媒開発により、アルケンの当量の低減やE-アルケンの適用などの進展を期待したい。

 参考文献

  1. Huang, L.; Arndt, M.; Gooßen, K.; Heydt, H.; Gooßen, L. J. Late Transition Metal-Catalyzed Hydroamination and Hydroamidation. Chem. Rev. 2015, 115, 2596–2697. DOI: 10.1021/cr300389u
  2. Yang, Y.; Shi, S.-L.; Niu, D.; Liu, P.; Buchwald, S. L. Catalytic Asymmetric Hydroamination of Unactivated Internal Olefins to Aliphatic Amines. Science 2015, 349, 62–66. DOI: 1126/science.aab3753
  3. (a) Zhou, J. S.; Hartwig, J. F. Intermolecular, Catalytic Asymmetric Hydroamination of Bicyclic Alkenes and Dienes in High Yield and Enantioselectivity. J.Am. Chem. Soc. 2008, 130, 12220–12221. DOI: 10.1021/ja803523z (b) Sevov, C. S.; Zhou, J. S.; Hartwig, J. F. Iridium-Catalyzed Intermolecular Hydroamination of Unactivated Aliphatic Alkenes with Amides and Sulfonamides. J. Am. Chem. Soc. 2012, 134, 11960–11963. DOI: 10.1021/ja3052848
  4. Pan, S.; Endo, K.; Shibata, T. Ir(I)-Catalyzed Intermolecular Regio- and Enantioselective Hydroamination of Alkenes with Heteroaromatic Amines. Org. Lett. 2012, 14, 780–783. DOI: 10.1021/ol203318z
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 磁力で生体触媒反応を制御する
  2. 世界初!ラジカル1,2-リン転位
  3. 合成化学の”バイブル”を手に入れよう
  4. 【書籍】イシューからはじめよ~知的生産のシンプルな本質~
  5. 第25回ケムステVシンポ「データサイエンスが導く化学の最先端」を…
  6. フッ素をホウ素に変換する触媒 :簡便なPETプローブ合成への応用…
  7. ニコラウ祭り
  8. 生体医用イメージングを志向した第二近赤外光(NIR-II)色素:…

注目情報

ピックアップ記事

  1. 第13回化学遺産認定~新たに3件を認定しました~
  2. マテリアルズ・インフォマティクスにおけるデータの前処理-データ整理・把握や化学構造のSMILES変換のやり方を解説-
  3. ニトリルオキシドの1,3-双極子付加環化 1,3-Dipolar Cycloaddition of Nitrile Oxide
  4. SDGsと化学: 元素循環からのアプローチ
  5. ワンチップ顕微鏡AminoMEを買ってみました
  6. 第7回日本化学会東海支部若手研究者フォーラム
  7. 【Vol.1】研究室ってどんな設備があるの? 〜ロータリーエバポレーター〜
  8. データ駆動型R&D組織の実現に向けた、MIを組織的に定着させる3ステップ
  9. ChemTile GameとSpectral Game
  10. “腕に覚えあり”の若手諸君、「大津会議」を目指そう!

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年2月
1234567
891011121314
15161718192021
22232425262728

注目情報

最新記事

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

持続可能な社会の実現に向けて、太陽電池は太陽光発電における中心的な要素として注目…

有機合成化学協会誌2025年3月号:チェーンウォーキング・カルコゲン結合・有機電解反応・ロタキサン・配位重合

有機合成化学協会が発行する有機合成化学協会誌、2025年3月号がオンラインで公開されています!…

CIPイノベーション共創プログラム「未来の医療を支えるバイオベンチャーの新たな戦略」

日本化学会第105春季年会(2025)で開催されるシンポジウムの一つに、CIPセッション「未来の医療…

OIST Science Challenge 2025 に参加しました

2025年3月15日から22日にかけて沖縄科学技術大学院大学 (OIST) にて開催された Scie…

ペーパークラフトで MOFをつくる

第650回のスポットライトリサーチには、化学コミュニケーション賞2024を受賞された、岡山理科大学 …

月岡温泉で硫黄泉の pH の影響について考えてみた 【化学者が行く温泉巡りの旅】

臭い温泉に入りたい! というわけで、硫黄系温泉を巡る旅の後編です。前回の記事では群馬県草津温泉をご紹…

二酸化マンガンの極小ナノサイズ化で次世代電池や触媒の性能を底上げ!

第649回のスポットライトリサーチは、東北大学大学院環境科学研究科(本間研究室)博士課程後期2年の飯…

日本薬学会第145年会 に参加しよう!

3月27日~29日、福岡国際会議場にて 「日本薬学会第145年会」 が開催されま…

TLC分析がもっと楽に、正確に! ~TLC分析がアナログからデジタルに

薄層クロマトグラフィーは分離手法の一つとして、お金をかけず、安価な方法として現在…

先端の質量分析:GC-MSおよびLC-MSデータ処理における機械学習の応用

キャラクタライゼーションの機械学習応用は、マテリアルズ・インフォマティクス(MI)およびラボオートメ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー