[スポンサーリンク]

化学者のつぶやき

非古典的カルボカチオンを手懐ける

[スポンサーリンク]

キラルなブレンステッド酸触媒による非古典的カルボカチオンのエナンチオ選択的反応が開発された。低分子触媒を用いた非古典的カルボカチオンの立体制御に成功した初めての例である。

非古典的カルボカチオンとエナンチオ選択的反応の開発

2-ノルボルニルカチオンは、カチオンが局在化した古典的カルボカチオンとs結合の供与によりカチオンが非局在化した非古典的カルボカチオンが考えられる(図1A)。二十世紀の化学界において、後者の非古典的カルボカチオンの存在に関して激しい論争が繰り広げられた。長い論争の末、1960年代にOlahらにより非古典的カルボカチオンの存在が証明された[1]。さらに2013年、2-ノルボルニルカチオンのX線結晶構造解析の成功により、非古典的カルボカチオンの存在は確かなものとなった[2]
一方、古典的カルボカチオンのエナンチオ選択的反応は近年いくつも開発されている[3]。しかし、非古典的カルボカチオンを経由したエナンチオ選択的反応は、抗体触媒を用いた一例のみである[4]。カチオンが非局在化しているため、立体を制御する手段がなく不斉反応に用いることは困難であった。
本論文の著者であるListらは、Winsteinらの報告に着目し非古典的カルボカチオンの不斉制御に挑戦した[5]。その報告は高い光学純度をもつexo-ノルボルニルスルホン酸エステルが、酸加溶媒分解によりカルボカチオンを経由してラセミ体となる反応である(図1B)。Listらはアキラルな非古典的カルボカチオンに対し、対アニオンによりキラル反応場を提供すれば立体化学を制御できるのではないかと考えた。その結果今回、キラルブレンステッド酸触媒であるイミドジホスホリミダート(IDPi)を用いることで、ラセミ体の2-ノルボニル誘導体から光学純度の高い生成物を合成できることを見いだした(図1C)。非古典的カルボカチオンを低分子触媒で立体制御できた初めての例となる。

図1. (A)古典的カルボカチオンと非古典的カルボカチオン (B)Winsteinの実験 (C)今回の反応

“Catalytic Enantiocontrol over a Non-Classical Carbocation”
Properzi, R.; Kaib, P. S. J.; Leutzsch, M.; Pupo, G.; Mitra, R.; De, C. K.; Song, L.; Schreiner, P. R.; List, B.
Nat. Chem. 2020, ASAP. DOI: 10.1038/s41557-020-00558-1

論文著者の紹介


研究者:Benjamin List
研究者の経歴:
1997 Ph.D., University of Frankfurt, Germany (Prof. Johann Mulzer)
1997–1998 Postdoc, Scripps Research Institute, USA (Prof. Richard Lerner)
1999–2003 Assistant Professor, Scripps Research Institute, USA
2003–2005 Manager, Research Group Max Planck Institute for Coal Research, Germany
2005– Director and Scientific Member, Max Planck Institute for Coal Research, Germany
研究内容:有機触媒や遷移金属触媒、生体触媒の開発

論文の概要

3 mol%のIDPi触媒存在下、2-exoノルボルニルトリクロロアセトイミダート(1)と1,3,5-トリメトキシベンゼン(2: 10当量)を反応させることで、光学純度の高い2-exoノルボルニル1,3,5-トリメトキシベンゼン(3)が生成した (図2A)。IDPiは、他のキラルブレンステッド酸触媒と比較して共役塩基の塩基性が低く、2-ノルボルニルカチオンと反応しないため本反応に適した触媒といえる。また、(–)-1と(+)-1の各々からも、ラセミ体と同じエナンチオ選択性で3が生成した。さらに、1endo体である4を用いた場合も高選択的に3を与えた。
様々な化合物から2-ノルボルニルカチオンを発生させても、光学純度の高い3を得られることがわかった(図2B)。ノルボルネン(5)やノルトリシクレン(6)のプロトン化によって3を発生させた場合e.r. = 92:8と高エナンチオ選択的に3を与えた。また、2-exoフルオロノルボルナン(7)に対しては、IDPiに加えトリメチルアリルシランを添加することで3が得られた。IDPiとシランから生成するシリリウムルイス酸が、C–F結合を切断すると同時にエナンチオ選択性を発現させていると考えられる[6]。さらにシクロペンテン誘導体8を用いても、分子内環化が進行し十分な光学純度で3を与えた。
続いて、分子動力学シミュレーションによって中間体を構造最適化した (図2C)。その結果、カチオンと触媒の間には三種類の非共有結合性相互作用が存在することがわかった。これらの相互作用によってカチオンのC1とC2の位置がジアステレオトピックとなり、求核攻撃の方向が定まりエナンチオ選択性が発現する。さらに、C1–C6とC2–C6の結合長が異なり、2-ノルボルニルカチオンが非対称になっていることもわかった。

図2. A)ノルボルニル誘導体のエナンチオ収束反応B) 様々な出発物質を使えるC) 最もエネルギーの低い中間体の球棒モデル

 

以上、非古典的カルボカチオンのエナンチオ選択的反応が開発された。本研究は、テルペンなど非古典的カルボカチオン中間体の経由が示唆される生合成経路の機構解明に繋がることが期待される。

 参考文献

  1. Olah, G. A. 100 years of Carbocations and Their Significance in Chemistry. J. Org. Chem. 2001, 66, 5943–5957. DOI: 10.1021/jo010438x
  2. Scholz, F.; Himmel, D.; Heinemann, F. W.; Schleyer, P. v. R.; Meyer, K.; Krossing, I. Crystal Structure Determination of the Nonclassical2-Norbornyl Cation. Science 2013, 341, 62–64. DOI: 1126/science.1238849
  3. Brak, K.; Jacobsen, E. N. Asymmetric Ion-Pairing C Angew. Chem., Int. Ed. 2013, 52, 534–561. DOI: 10.1002/anie.201205449
  4. Ma, L.; Sweet, E. H.; Schultz, P. G. Selective Antibody-Catalyzed Solvolysis of endo-2-Norbornyl Mesylate. J. Am. Chem. Soc. 1999, 121, 10227–10228. DOI: 10.1021/ja990896b
  5. Winstein, S.; Trifan, D. S. The Structure of the Bicyclo[2,2,1]2-Heptyl (Norbornyl) Carbonium Ion. J. Am. Chem. Soc. 1949, 71, 2953–2953. DOI: 10.1021/ja01176a536
  6. Schreyer, L.; Properzi, R.; List. B. IDPi Catalysis. Angew. Chem., Int. Ed. 2019, 58, 12761–12777. DOI: 10.1002/anie.201900932
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. アルカリ金属でメトキシアレーンを求核的にアミノ化する
  2. アメリカで Ph.D. を取る -Visiting Weeken…
  3. 第97回 触媒化学融合研究センター講演会に参加してみた
  4. DNAを人工的につくる-生体内での転写・翻訳に成功!
  5. 第4回CSJ化学フェスタに参加してきました!
  6. トシルヒドラゾンとボロン酸の還元的カップリング反応とその応用展開…
  7. 人と人との「結合」を「活性化」する
  8. 生きた細胞内のヘムを検出する蛍光プローブ

注目情報

ピックアップ記事

  1. 配座制御が鍵!(–)-Rauvomine Bの全合成
  2. ダイヤモンド構造と芳香族分子を結合させ新たな機能性分子を創製
  3. 三菱化学が有機太陽電池事業に参入
  4. パラジウムが要らない鈴木カップリング反応!?
  5. ライトケミカル工業株式会社ってどんな会社?
  6. 誰も教えてくれなかった 実験ノートの書き方 (研究を成功させるための秘訣)
  7. 単分子レベルでの金属―分子接合界面構造の解明
  8. 光化学スモッグ注意報が発令されました
  9. アルファリポ酸 /α-lipoic acid
  10. Ni(0)/SPoxIm錯体を利用した室温におけるCOの可逆的化学吸着反応

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年1月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

人工光合成の方法で有機合成反応を実現

第653回のスポットライトリサーチは、名古屋大学 学際統合物質科学研究機構 野依特別研究室 (斎藤研…

乙卯研究所 2025年度下期 研究員募集

乙卯研究所とは乙卯研究所は、1915年の設立以来、広く薬学の研究を行うことを主要事業とし、その研…

次世代の二次元物質 遷移金属ダイカルコゲナイド

ムーアの法則の限界と二次元半導体現代の半導体デバイス産業では、作製時の低コスト化や動作速度向上、…

日本化学連合シンポジウム 「海」- 化学はどこに向かうのか –

日本化学連合では、継続性のあるシリーズ型のシンポジウムの開催を企画していくことに…

【スポットライトリサーチ】汎用金属粉を使ってアンモニアが合成できたはなし

Tshozoです。 今回はおなじみ、東京大学大学院 西林研究室からの研究成果紹介(第652回スポ…

第11回 野依フォーラム若手育成塾

野依フォーラム若手育成塾について野依フォーラム若手育成塾では、国際企業に通用するリーダー…

第12回慶應有機化学若手シンポジウム

概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大学理工学部・…

新たな有用活性天然物はどのように見つけてくるのか~新規抗真菌剤mandimycinの発見~

こんにちは!熊葛です.天然物は複雑な構造と有用な活性を有することから多くの化学者を魅了し,創薬に貢献…

創薬懇話会2025 in 大津

日時2025年6月19日(木)~6月20日(金)宿泊型セミナー会場ホテル…

理研の研究者が考える未来のバイオ技術とは?

bergです。昨今、環境問題や資源問題の関心の高まりから人工酵素や微生物を利用した化学合成やバイオテ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー