[スポンサーリンク]

スポットライトリサーチ

複数酵素活性の同時検出を可能とするactivatable型ラマンプローブの開発

[スポンサーリンク]

第292回のスポットライトリサーチは、東京大学大学院 薬学系研究科・藤岡礼任さんにお願いしました。

藤岡さんの所属する浦野研究室(薬品代謝化学教室)では、生細胞内・動物個体内で起こる種々のイベントを高感度に可視化する小分子蛍光プローブの論理的設計指針や、それに基づき創製されたプローブを利用した医療・診断への応用が蓄積されています。これまでにも数多くの研究がケムステにて紹介されており、それを見るたびに筆者は無駄を含まず精緻を極めた分子にこそ理想的な機能が宿るのだと痛感(し、ふと自分が設計した分子に目を落としては半ば絶望)させられます。今回の成果は生体内の加水分解酵素と反応しラマン信号を発する構造へと誘導されるラマンプローブ群を新たに開発し、生細胞内で複数の酵素活性を同時にイメージングすることに成功したという内容です。J. Am. Chem. Soc.誌原著論文およびプレスリリースとして公開されています。

“Multicolor Activatable Raman Probes for Simultaneous Detection of Plural Enzyme Activities”
Fujioka H, Shou J, Kojima R, Urano Y, Ozeki Y, Kamiya M
J. Am. Chem. Soc. 2020, 142, 20701-20707. doi:10.1021/jacs.0c09200

指導にあたっている神谷真子准教授から、藤岡さんに関する人物評を以下のように頂いています。修士課程修了後は同研究室にて博士課程へと進学されるとのことで、今後とものご活躍が期待されます。それでは今回のインタビューもお楽しみください!

藤岡さんは学部4年次に当研究室に配属され、『ラマン散乱を検出原理とする機能性化学プローブの開発』という研究に取り組んでいます。この研究は、我々の持つ蛍光プローブ開発の知見・技術を新しい領域で活用することを目指しており、既存知識の習得と異分野への展開という2つのベクトルのバランスをとって進める必要がありますが、藤岡さんは2年間という短期間で見事に本成果としてまとめ上げました。それは、『自ら考え、楽しんで研究を進める』姿勢と、研究を計画的に進める能力に長けているからだと思います。また最近では、修士論文を提出期限の2カ月以上前に仕上げてきて、現在既に別の複数の研究テーマを進めており、藤岡さんには驚かされることが多いです。来年度からの博士課程で、どのように研究を展開してくれるのか、今からとても楽しみにしています。

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

光で分子振動を検出するラマン顕微法は,特にラマンプローブと組み合わせることで,蛍光法と比べて高い多重検出能を実現できることから近年注目を浴びています。しかし,既存のラマンプローブは常に信号を示すalways-on型のプローブであり,生体内の分子と反応してラマン信号がoffからonに変化するactivatableな特性を有するラマンプローブは開発されていないため,その応用先が限られていました。今回,我々は世界で初めて,生体内の加水分解酵素と反応してラマン信号がoffからonに変化するactivatable型のラマンプローブの開発に成功し,生きた細胞内において複数の標的酵素の活性を同時にイメージングすることに成功しました(図)。本プローブで用いたラマン信号の制御原理は他のラマンプローブ開発においても一般化することが可能であるため,今後同様の信号制御原理に基づいて,本プローブのように同時に複数の標的分子を可視化できるラマンプローブ群を拡充することができれば,ラマン顕微法の多重検出能を活かしたマルチターゲットな生命科学研究が大きく発展し,生命現象の更なる理解につながることが期待されます。

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

プローブ母核の探索です。今回プローブ母核の候補として合成した一連の色素は生理的条件下であまり安定性が高くないものがほとんどでした。特にプローブ化のためにキサンテン環3位のアミノ基をアミド化した化合物はさらに安定性が悪くなり,最初に合成できたと思ったプローブのモデル化合物は吸収スペクトルを測定しようとした時にはもう他の化合物に分解してしまっていました。そこで様々な骨格の色素の合成を行って安定性を中心に評価を行っていきました。すると合成した色素の種類が増えてくるにつれて,構造展開によってどれほど安定性が変化するかの法則性が見えてきました。本研究のプローブ母核である9CN-JCPを合成して評価を行った時はある程度予想通りの結果が得られ,これならいけるかも!という手応えがありました。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

ラマン分光法についての勉強です。当研究室では蛍光プローブの開発は盛んに行われていますが,ラマンプローブの開発を行った例はこれまでなく,ラマンイメージングについての知見もほとんどなかったので,教科書的な理論の理解から実際に得られるデータの解釈にいたるまで,はじめは分からないことばかりでした。ですが共同研究先の工学部の皆様にも手厚くサポートいただきましたし,なにより自分の知らないことについて調べていくのは単純に面白くもあったので,新しい世界の扉を開くような感覚でこの分野について学んでいけたのは良かったかなと思います。その他にも研究全体を通して大変なことは色々ありましたが,日頃から先生方と密にディスカッションをして,常に課題を共有できていたというのは非常に大きかったと思います

Q4. 将来は化学とどう関わっていきたいですか?

原子レベルで分子をデザインすることができるのが化学の最大の魅力だと思っているのですが,このような化学の魅力を他分野の方々に伝えられるような仕事をしていければと思います。本研究を通しても「化学の力を使えばこんなことができるようになります」ということを,顕微鏡を開発されている物理学者の方々や実際にそのユーザーになられる生物学者の方々に知っていただいて,より幅広い分野の方々に化学の魅力に触れてもらえれば幸いです。また,機能性を有した有機小分子のラマンプローブはまだまだ数が少なく,今後化学者が有機化学・光化学・物理化学の知見を活用して新しい機能を持つラマンプローブを開発することができればラマンイメージング分野は更なる発展を遂げることができると考えているので,このような学問をまたいだ境界領域の発展にも貢献していければと思います。これからも色々な方々に興味を持ってもらえるような面白い分子を作っていきたいです。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

月並みですが,とにかくトライ&エラーの回数を増やすことは大事だったと思います。研究を始めたばかりのいつぞやの飲み会でとある先生に言われた「どうせ定期的に失敗するから,失敗のサイクルを早めることを意識したらいいよ」という言葉がとても印象的でした。たとえ失敗であっても何かしら試行を重ねて議論できる材料が増えれば,次第にできることとできないことが見えてくるので,それをもとにうまく微調整しながら研究の方向性を定めることができたのかなと思います。僕自身「とりあえず作ってみるか」でスタートしてあっけなく失敗することが多いのですが,いずれしていたであろう失敗に早めに気づけて良かった,という感じにプラスに捉えるようにしています。

最後になりますが,本研究のラマン測定等において大変お世話になった東京大学工学部の小関泰之准教授と寿景文氏に,この場を借りて深く御礼申し上げます。

研究者の略歴

写真

名前:藤岡 礼任(ふじおか ひろよし)
所属:東京大学大学院 薬学系研究科 薬品代謝化学教室 修士課程2年
研究テーマ:機能性ラマンプローブの開発

関連リンク

関連書籍

[amazonjs asin=”B011QCXMQ4″ locale=”JP” title=”ラマン分光法 (分光法シリーズ)”] [amazonjs asin=”4061571095″ locale=”JP” title=”赤外・ラマン分光法 (分光測定入門シリーズ6)”] [amazonjs asin=”4320044584″ locale=”JP” title=”赤外・ラマン分光分析 (分析化学実技シリーズ 機器分析編)”]

khaki

投稿者の記事一覧

博士(薬科学). 関西でポスドク中. ケミカルバイオロジーや生体関連化学の研究をしています。分子の力で未知の生命現象を解明したい。ラーメンとリプトンミルクティーでできている。

関連記事

  1. Evonikとはどんな会社?
  2. 「夢・化学-21」 夏休み子ども化学実験ショー
  3. ドラマチック有機合成化学: 感動の瞬間100
  4. ハッピー・ハロウィーン・リアクション
  5. サイコロを作ろう!
  6. マテリアルズ・インフォマティクスにおける従来の実験計画法とベイズ…
  7. 続・名刺を作ろう―ブロガー向け格安サービス活用のススメ
  8. 環状ビナフチルオリゴマーの大きさが円偏光の向きを変える

注目情報

ピックアップ記事

  1. バトラコトキシン (batrachotoxin)
  2. 2020年ノーベル化学賞は「CRISPR/Cas9ゲノム編集法の開発」に!SNS予想と当選者発表
  3. まんがサイエンス
  4. 「糖化学ノックイン」の世界をマンガ化して頂きました!
  5. 新しい2-エキソメチレン型擬複合糖質を開発 ~触媒的な合成法確立と生物活性分子としての有用性の実証に成功~
  6. 花粉症対策の基礎知識
  7. アンデルセン キラルスルホキシド合成 Andersen Chiral Sulfoxide Synthesis
  8. 第21回「有機化学で生命現象を理解し、生体反応を制御する」深瀬 浩一 教授
  9. 金属材料・セラミックス材料領域におけるマテリアルズ・インフォマティクスの活用
  10. クラリベイト・アナリティクスが「引用栄誉賞2018」を発表

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年2月
1234567
891011121314
15161718192021
22232425262728

注目情報

最新記事

日本化学連合シンポジウム 「海」- 化学はどこに向かうのか –

日本化学連合では、継続性のあるシリーズ型のシンポジウムの開催を企画していくことに…

【スポットライトリサーチ】汎用金属粉を使ってアンモニアが合成できたはなし

Tshozoです。 今回はおなじみ、東京大学大学院 西林研究室からの研究成果紹介(第652回スポ…

第11回 野依フォーラム若手育成塾

野依フォーラム若手育成塾について野依フォーラム若手育成塾では、国際企業に通用するリーダー…

第12回慶應有機化学若手シンポジウム

概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大学理工学部・…

新たな有用活性天然物はどのように見つけてくるのか~新規抗真菌剤mandimycinの発見~

こんにちは!熊葛です.天然物は複雑な構造と有用な活性を有することから多くの化学者を魅了し,創薬に貢献…

創薬懇話会2025 in 大津

日時2025年6月19日(木)~6月20日(金)宿泊型セミナー会場ホテル…

理研の研究者が考える未来のバイオ技術とは?

bergです。昨今、環境問題や資源問題の関心の高まりから人工酵素や微生物を利用した化学合成やバイオテ…

水を含み湿度に応答するラメラ構造ポリマー材料の開発

第651回のスポットライトリサーチは、京都大学大学院工学研究科(大内研究室)の堀池優貴 さんにお願い…

第57回有機金属若手の会 夏の学校

案内:今年度も、有機金属若手の会夏の学校を2泊3日の合宿形式で開催します。有機金…

高用量ビタミンB12がALSに治療効果を発揮する。しかし流通問題も。

2024年11月20日、エーザイ株式会社は、筋萎縮性側索硬化症用剤「ロゼバラミン…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー