[スポンサーリンク]

化学者のつぶやき

エネルギーの襷を繋ぐオキシムとアルケンの[2+2]光付加環化

[スポンサーリンク]

環状オキシムとアルケンの可視光増感型分子間[2+2]光付加環化反応が開発された。光触媒からのエネルギー移動によって環状オキシムが寿命の長い三重項状態に励起され、種々のアルケンと反応する

アゼチジン骨格合成とアザ・パターノ・ビューチ反応

アゼチジンは医薬品化学における重要骨格であり、効率的な合成法が求められている[1]。アゼチジンの合成には、古くから窒素求核剤の分子内求核置換反応が用いられてきたが、不利な重なり形配座を経由するため、収率や基質適用範囲に改善の余地がある(図1A)[2]。環歪みの大きいアザビシクロブタンの開環や、b-ラクタムの還元による合成法も報告されているが、直截的なアゼチジンの構築には至っていない。

一方、アルケンとイミン類の[2+2]光付加環化反応(アザ・パターノ・ビューチ反応)もアゼチジン合成に汎用される[2]。向井らは本反応を環状オキシムに初めて適用し、アリール基をもつイソオキサゾリンとインデン類やヘテロ芳香環との分子間[2+2]光付加環化反応を開発した(図1B)[3]。紫外線照射下一重項エキシプレックスを形成し、高ジアステレオ選択的に反応が進行するものの、基質適用範囲が限定的だった。2019年、本論文著者であるミシガン大学のSchindlerらは、可視光増感剤を利用したスチレンとオキシムの分子内アザ・パターノ・ビューチ反応を報告した(図1C)[4]。本反応は可視光照射下で進行するが、三重項状態のスチレン中間体の寿命が短く、分子間反応への応用が難しいことが課題であった。また利用できるアルケンはスチレン誘導体に限られていた。

今回、著者らは、可視光を用いた分子間アザ・パターノ・ビューチ反応を開発した(図1D)。Ir光触媒1からエステルをもつイソオキサゾリンへの三重項エネルギー移動を鍵とし、長年の課題であったアルケンの基質適用範囲の拡大を実現した。

図1. (A) アゼチジン骨格の合成法 (B) 向井らの合成法 (C) Schindlerらの分子内環化による合成法 (D) 今回の合成法

 

“Synthesis of Azetidines via Visible-Light-Mediated Intermolecular [2+2] Photocycloadditions

Becker, M. R.; Wearing, E. R.; Schindler, C. S. Nat. Chem. 2020, 12, 898–905.

DOI: 10.1038/s41557-020-0541-1

論文著者の紹介


研究者:Corinna S. Schindler

研究者の経歴:

1999–2004 Diploma, Technical University of Munich, Germany
2005–2010 Ph.D., ETH Zurich, Switzerland (Prof. Erick M. Carreira)
2010–2013 Postdoc, Harvard University, U.S.A. (Prof. Eric N. Jacobsen)
2013–2019 Assistant Professor, University of Michigan, U.S.A.
2019– Associate Professor, University of Michigan, U.S.A.

研究内容:オレフィン–カルボニルメタセシス、全合成

論文の概要

本反応は2-イソオキサゾリン2とアルケン3に対し、fac-[Ir(dFppy)3](1)存在下、青色LEDを照射することでアゼチジン誘導体4が合成できる (図2A)。C5位にメチレンもしくはスピロ炭素をもつ2は高収率でアゼチジン誘導体を与えた(4a, 4b)。また、C3位にニトリル基を有する場合も反応が進行した(4c)。アルケンの基質適用範囲は広く、エチレン(4d)を含む種々のアルケンが適用可能であった。一級アルコールや1,1-二置換アルケンを用いた場合にも環化生成物を与え(4e, 4f)、スピロアゼチジンも高収率で得られた(4g)。環状アルケンや四置換アルケンも本反応に利用することができた(4h, 4i)。

続いて著者らは、アゼチジン誘導体の変換反応を試みた(図2B)。アゼチジン誘導体4jのエステルの還元やグリニャール反応は問題なく進行した(5j, 6j)。イソオキサゾリンのN–O結合はPd触媒を用いた水素化によって開裂でき、ラクトン7jを与えた。Znと塩酸を4jに作用させた場合はイソオキサゾリンのN–C結合が開裂し、g-ラクタムへと誘導可能であった(8j)。

機構解明研究により、反応機構は以下のように提唱されている(図2C)。2がIr光触媒からのエネルギー移動で励起され、励起三重項状態のオキシムIが生成する。I3が反応して得られるビラジカル中間体IIまたはII’を経て環化が進行し、アゼチジン4を与える。ジアステレオ選択性発現の要因は、立体障害が小さいIIの配座がII’よりも有利であるためと考えられている。

図2. (A) 最適反応条件および基質適用範囲 (B) 誘導化 (C) 推定反応機構

 

以上、イソオキサゾリンとアルケンとのアザ・パターノ・ビューチ反応が開発された。本反応は基質適用範囲の広さが魅力であり、アゼチジン誘導体の簡便な合成法としての利用が期待される。

参考文献

  1. Brandi, A.; Cicchi, S.; Cordero, F. M. Novel Syntheses of Azetidines and Azetidinones. Chem. Rev. 2008, 108, 3988–4035. DOI: 10.1021/cr800325e
  2. Richardson, A. D.; Becker, M. R.; Schindler, C. S. Synthesis of Azetidines by Aza Paternò-Büchi Reactions. Chem. Sci. 2020, 11, 7553–7561. DOI: 10.1039/D0SC01017K
  3. (a) Kumagai, T.; Shimizu, K.; Kawamura, Y.; Mukai, T. Photochemistry of 3-Aryl-2-Isoxazoline. Tetrahedron, 1981, 37, 3365–3376. DOI: 1016/S0040-4020(01)92385-3 (b) Kumagai, T.; Shimizu, K.; Kawamura, Y.; Mukai. Photocycloaddition of 3-Aryl-2-Isoxazoline with Five-membered Heterocycles. Chem. Lett. 1983, 12, 1357–1360 DOI: 10.1246/cl.1983.1357 (c) Kawamura, Y.; Kumagai, T.; Mukai, T. Photocycloaddition Reaction of 3-Aryl-2-Isoxazoline with Indene. Generation of [2+2] Cycloadduct Stereoisomers. Chem. Lett. 1985, 14, 1937–1940. DOI: 10.1246/cl.1985.1937
  4. Becker, M. R.; Richardson, A. D.; Schindler, C. S. Functionalized Azetidines via Visible Light-Enabled Aza Paternò-Büchi Reactions. Chem. Commun. 2019, 10, 5095. DOI: 10.1038/s41467-019-13072-x
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 【書籍】英文ライティングの基本原則をおさらい:『The Elem…
  2. 【Spiber】新卒・中途採用情報
  3. Retraction watch リトラクション・ウオッチ
  4. 分子レベルでお互いを見分けるゲル
  5. 天然物生合成経路および酵素反応機構の解析 –有機合成から生化学へ…
  6. 徒然なるままにセンター試験を解いてみた
  7. ImageJがWebブラウザ上で利用可能に
  8. 高分子を”見る” その2

注目情報

ピックアップ記事

  1. ピエトロ・ビギネリ Pietro Biginelli
  2. 三井化学、出光興産と有機EL材料の協業体制構築で合意
  3. クロム光レドックス触媒を有機合成へ応用する
  4. Pure science
  5. 技あり!マイルドにエーテルを切ってホウ素で結ぶ
  6. 企業研究者たちの感動の瞬間: モノづくりに賭ける夢と情熱
  7. 「重曹でお掃除」の化学(その2)
  8. 数々の日本企業がIntel 2023 EPIC Supplier Program Awardを受賞
  9. バリー・トロスト Barry M. Trost
  10. マイクロ波化学の事業化プラットフォーム 〜実証設備やサービス事例〜

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年1月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

第23回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

持続可能な社会の実現に向けて、太陽電池は太陽光発電における中心的な要素として注目…

有機合成化学協会誌2025年3月号:チェーンウォーキング・カルコゲン結合・有機電解反応・ロタキサン・配位重合

有機合成化学協会が発行する有機合成化学協会誌、2025年3月号がオンラインで公開されています!…

CIPイノベーション共創プログラム「未来の医療を支えるバイオベンチャーの新たな戦略」

日本化学会第105春季年会(2025)で開催されるシンポジウムの一つに、CIPセッション「未来の医療…

OIST Science Challenge 2025 に参加しました

2025年3月15日から22日にかけて沖縄科学技術大学院大学 (OIST) にて開催された Scie…

ペーパークラフトで MOFをつくる

第650回のスポットライトリサーチには、化学コミュニケーション賞2024を受賞された、岡山理科大学 …

月岡温泉で硫黄泉の pH の影響について考えてみた 【化学者が行く温泉巡りの旅】

臭い温泉に入りたい! というわけで、硫黄系温泉を巡る旅の後編です。前回の記事では群馬県草津温泉をご紹…

二酸化マンガンの極小ナノサイズ化で次世代電池や触媒の性能を底上げ!

第649回のスポットライトリサーチは、東北大学大学院環境科学研究科(本間研究室)博士課程後期2年の飯…

日本薬学会第145年会 に参加しよう!

3月27日~29日、福岡国際会議場にて 「日本薬学会第145年会」 が開催されま…

TLC分析がもっと楽に、正確に! ~TLC分析がアナログからデジタルに

薄層クロマトグラフィーは分離手法の一つとして、お金をかけず、安価な方法として現在…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー