[スポンサーリンク]

一般的な話題

天秤で量れるのは何mgまで?

[スポンサーリンク]

どんな測定にも測定限界がありますが、一番身近な測定装置である電子天秤の測定限界はご存知でしょうか?
恐らく有機合成をしている多くの人が、微量の触媒や生成物、あるいは測定試料を秤量していて正確性に不安を覚えたことがあると思います。これまでケムステにも、どうすれば秤量誤差を少なくできるかについていくつか記事がありました(これとかこれ)。では、最小でどれくらい量れるかというと……どうでしょうか?
本記事では、有機合成実験(試料は1度しか秤量しない)をする上で「1番少量の試薬が何mg以上になるよう反応のスケールを設計すれば安心か?」について考えたいと思います。

「d = 0.01 mg」は「最小0.01 mgが秤量できる」ではない

これ、誤解している人が多いのではないでしょうか。筆者の周りには、島津やAND、sartorius、メトラーの天秤がありますが、いずれも天秤本体のどこかに「d = 0.01 mg」などと書かれています。意味ありげですが、これは最小で0.01 mgのサンプルが正確に秤量できるという意味ではありません。

「d = 0.01 mg」は、ただの「最小表示」です。
貴重な触媒や試薬だからと言って、0.01 mgだけ秤量……と計画するのは避けたいところ。仮に天秤が理想的な環境に置かれていたとしても、その値には大きな誤差が含まれます。

じゃあ結局最小で何mg量れるの? カタログやHPにはたくさんの指標があって、どれが重要か全くわからない! ……ですよね。恥ずかしながら筆者も、天秤の購入を検討するときに比較のためにHPをみて愕然としました。

小スケールの際は繰り返し性(標準偏差)をチェックすべし

注目するとよい代表的な誤差の指標として、繰り返し性と直線性が挙げられます。繰り返し性とは、分銅を10回量って計算された標準偏差です。一方直線性は、例えば10 gの分銅と10 mgの分銅では誤差の程度が同じではない、ということに対応します。
一般に繰り返し性より直線性の値の方が大きいのですが、重いサンプルを測定するほど誤差は大きくなる傾向にあり、直線性はこの「大きい場合の誤差」と考えて良さそうです。逆に小スケールでは直線性の影響は小さく、特にキャリブレーション(直線性の補正)された天秤では、繰り返し性に比べ無視しても構わないほど小さくなるようです。
蛇足ですが、誤差について「ある特定の値での測定値のばらつき」と「値の範囲によるばらつきの程度の差」で整理するのは、天秤以外にも色んな測定機器を利用する際に参考になる考え方だなと思います。

さて、では具体例を見てみましょう。
例えばメトラーの天秤XSR205DUVは、こちらのHPにあるように、

繰り返し性 0.02 mg
直線性 ±0.2 mg

とあります。これは、1度だけ試料を量った場合、(環境による誤差要因を最小にしたとしても)最悪で±0.2 mgのズレが生じうるという意味のようです。しかし前述の通り、直線性のズレは少量では小さいため、小スケールの場合は主に繰り返し性(0.02 mg)を考慮すればよいことになります。

まとめ

最小表示が0.01 mgでも、その量が正確に量れるわけではありません。小スケールの場合は、1番少量の試薬が繰り返し性より十分大きい量になるようスケールを設計すると安心です。
例に出した装置では繰り返し性(標準偏差)が0.02 mgなので、例えば最小表示の10倍である0.1 mgを量ったとしても、20%の誤差があることになります。ちょっと大きい気がしますね。もしこの天秤を使って触媒反応の条件検討などを行うなら、もう少し秤量する量が大きくなるよう反応自体のスケールを見直す必要があるかもしれません。

大事な点は、「最小でこの量までは正確に量れます」という数値があるのではなく、常に誤差がついてくるということですね。また、繰り返し性や直線性は装置に由来する誤差なので、環境由来の誤差を少なくする工夫も重要です。そちらについてはケムステの過去記事をご覧ください。

繰り返し性・直線性は装置本体には書いていないことも多いです。新年の初めにまず、手元の天秤について取説やHPでチェックしてみてはいかがでしょうか?

2022/3/13 追記:
一部誤解を招く表現があるとの指摘をいただき、加筆修正致しました。ご指摘くださった方、ありがとうございました。

関連記事

関連リンク

Avatar photo

arrow

投稿者の記事一覧

大学で有機金属触媒について研究している学生→発光材料や分子性電子素子を研究している大学教員になりました。 好きなものはバスケとお酒、よくしゃべりよく聞きよく笑うこと。 日々の研究生活で見、聞き、感じ、考えたことを発信していきます。

関連記事

  1. ケムステイブニングミキサー2018へ参加しよう!
  2. 学生はなんのために研究するのか? 研究でスキルアップもしませんか…
  3. 【速報】2010年ノーベル生理医学賞決定ーケンブリッジ大のエドワ…
  4. ピレスロイド系殺虫剤のはなし
  5. スルホキシドの立体化学で1,4-ジカルボニル骨格合成を制す
  6. アメリカの大学院で受ける授業
  7. ククルビットウリルのロタキサン形成でClick反応を加速する
  8. 環状アミンを切ってフッ素をいれる

注目情報

ピックアップ記事

  1. [6π]光環化 [6π]Photocyclization
  2. 発展が続く新型コロナウィルス対応
  3. 「アバスチン」臨床試験中間解析を公表 中外製薬
  4. 化学者と不妊治療
  5. 【書評】続続 実験を安全に行うために –失敗事例集–
  6. 最期の病:悪液質
  7. 有機反応を俯瞰する ーリンの化学 その 1 (Wittig 型シン脱離)ー
  8. チャップマン転位 Chapman Rearrangement
  9. 自己修復する単一分子素子「DNAジッパー」
  10. 研究室でDIY!~割れないマニホールドをつくろう~

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年1月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

植物由来アルカロイドライブラリーから新たな不斉有機触媒の発見

第632回のスポットライトリサーチは、千葉大学大学院医学薬学府(中分子化学研究室)博士課程後期3年の…

MEDCHEM NEWS 33-4 号「創薬人育成事業の活動報告」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

第49回ケムステVシンポ「触媒との掛け算で拡張・多様化する化学」を開催します!

第49回ケムステVシンポの会告を致します。2年前(32回)・昨年(41回)に引き続き、今年も…

【日産化学】新卒採用情報(2026卒)

―研究で未来を創る。こんな世界にしたいと理想の姿を描き、実現のために必要なものをうみだす。…

硫黄と別れてもリンカーが束縛する!曲がったπ共役分子の構築

紫外光による脱硫反応を利用することで、本来は平面であるはずのペリレンビスイミド骨格を歪ませることに成…

有機合成化学協会誌2024年11月号:英文特集号

有機合成化学協会が発行する有機合成化学協会誌、2024年11月号がオンライン公開されています。…

小型でも妥協なし!幅広い化合物をサチレーションフリーのELSDで検出

UV吸収のない化合物を精製する際、一定量でフラクションをすべて収集し、TLCで呈色試…

第48回ケムステVシンポ「ペプチド創薬のフロントランナーズ」を開催します!

いよいよ本年もあと僅かとなって参りましたが、皆様いかがお過ごしでしょうか。冬…

3つのラジカルを自由自在!アルケンのアリール–アルキル化反応

アルケンの位置選択的なアリール–アルキル化反応が報告された。ラジカルソーティングを用いた三種類のラジ…

【日産化学 26卒/Zoomウェビナー配信!】START your ChemiSTORY あなたの化学をさがす 研究職限定 キャリアマッチングLIVE

3日間で10領域の研究職社員がプレゼンテーション!日産化学の全研究領域を公開する、研…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP