[スポンサーリンク]

化学者のつぶやき

エノールエーテルからα-三級ジアルキルエーテルをつくる

[スポンサーリンク]

α-オキシラジカルを経るエノールエーテルのa位官能基化が開発された。種々のアルキルエノールエーテルとオレフィンからα-三級ジアルキルエーテルが合成できる。

α-三級ジアルキルエーテルの合成

ジアルキルエーテルは、化合物の水溶性を高め代謝安定性の改善に寄与する[1]。そのため医薬品に多く見られる骨格である[2]。ジアルキルエーテルの構築法は、Williamsonエーテル合成が代表的であるが、嵩高いa-三級ジアルキルエーテルを合成する場合、脱離反応が競合する。この課題を解決する効率的なα-三級ジアルキルエーテル合成法は少なく、導入可能な置換基の種類も限られていた。
近年、優れたa-三級ジアルキルエーテル合成法が開発されたが[3,4]、カルボカチオンを経由するこれら手法と相補的なアプローチとして、α-オキシラジカルを利用したジアルキルエーテル合成法が知られる。BaranShenviらは、金属ヒドリド水素原子移動(MHAT)を利用して、エノールエーテルよりα-オキシラジカルを発生させ、ジアルキルエーテルを合成した(図 1A)[5,6]。一方でDoyleやWangらは、酸性条件下、アセタールにニッケル触媒と亜鉛を作用させることで、ジアルキルエーテルの合成に成功した(図 1B-i) [7,8]。中間体のa-オキシラジカルは、アセタールから得られるオキソカルベニウムイオンの還元により生成する。しかし、α-オキシラジカルを経由するこれらの反応における生成物は、α-二級ジアルキルエーテルに限られていた。本論文の著者であるDixonらは、先行研究において可視光レドックス触媒存在下、アリール基をもつケタールよりα-オキシラジカルを発生させることで、α-三級ジアルキルエーテルの構築に成功した(図 1B-ii) [9]
今回著者らは、エノールエーテルよりa-オキシラジカルを発生させるα-三級ジアルキルエーテルの合成法を開発した(図 1C)。本手法は、全ての置換基がアルキル化されたa-三級ジアルキルエーテルも効率的に合成することができ、広い官能基許容性をもつ。

図 1. (A) MHATを利用したジアルキルエーテル合成法、 (B)SETを利用したジアルキルエーテル合成法、(C) 今回の反応

 

“αTertiary Dialkyl Ether Synthesis via Reductive Photocatalytic αFunctionalization of Alkyl Enol Ethers”

Leitch, J. A.; Rossolini, T.; Rogova, T.; Dixon, D. J. ACS Catal. 2020, 10, 11430–11437.

DOI: 10.1021/acscatal.0c02584

論文著者の紹介


研究者: Darren Dixon
研究者の経歴:
1993–1997 Ph.D., University of Oxford, UK (Prof. Stephen. G. Davies)
1997–2000 Postdoc, University of Cambridge, UK (Prof. Steven. V. Ley)
2000–2004 Senior Assistant, University of Cambridge, UK
2004–2007 Senior Lecturer, University of Manchester, UK
2007–2008 Reader, University of Manchester, UK
2008–present Professor, University of Oxford, UK
2014–present Director, EPSRC CDT in Synthesis for Biology and Medicine, University of Oxford, UK
研究内容:遷移金属触媒を用いた新規反応開発、光化学反応、天然物合成
論文の概要
可視光レドックス触媒とHantzsch ester誘導体、TMSCl存在下、エノールエーテル1とオレフィン2に対し可視光を照射することでα-三級ジアルキルエーテル3を与えた(図 2A)。オレフィンとしては、デヒドロアラニン誘導体(2a)やフェニルビニルスルホキシド(2b)が利用できる他、オキサゾリジノン誘導体(2c)を用いた場合には、高いジアステレオ選択性で対応する3が得られた。本反応はシクロブタン(1d)やフラン(1e)をもつエノールエーテルにも適用できた。
本反応は、以下の反応機構が提唱されている(図 2B)。まず可視光照射によって励起されたイリジウム触媒がHantzsch ester誘導体を酸化する。生じたイリジウム(II)から、オキソカルベニウムイオンへの一電子移動(SET)が起こり、α-オキシラジカルを生成する。その後、オレフィンへのギースラジカル付加反応と続く水素原子移動(HAT)を経て、α-三級ジアルキルエーテルを与える。なお、TMSClはオキソカルベニウムイオンの調製の際にルイス酸として働く。

図 2. (A) 基質適用範囲、(B) 推定反応機構

 

以上、可視光レドックス触媒を用いた、α-三級ジアルキルエーテル合成法が開発された。今後は本反応を用いた医薬品の合成など、より実用的な応用が期待される。

参考文献

  1. Wuitschik, G.; Rogers-Evans, M.; Müller, K.; Fischer, H.; Wagner, B.; Schuler, F.; Polonchuk, L.; Carreira, E. M. Oxetanes as Promising Modules in Drug Discovery. Angew. Chem., Int. Ed. 2006, 45, 7736–7739. DOI: 10.1002/anie.200602343
  2. McGrath, N. A.; Brichacek, M.; Njardarson, J. T.A Graphical Journey of Innovative Organic Architectures That Have Improved Our Lives. Chem. Educ. 2010, 87, 1348–1349. DOI: 10.1021/ed1003806
  3. Xiang, J.; Shang, M.; Kawamata, Y.; Lundberg, H.; Reisberg, S. H.; Chen, M.; Mykhailiuk, P.; Beutner, G.; Collins, M. R.; Davies, A.; Del Bel, M.; Gallego, G. M.; Spangler, J. E.; Starr, J.; Yang, S.; Blackmond, D. G.; Baran, P. S. Hindered Dialkyl Ether Synthesis with Electrogenerated Carbocations. Nature 2019, 573, 398–402. DOI:1038/s41586-019-1539-y
  4. Hibutani, S.; Kodo, T.; Takeda, M.; Nagao, K.; Tokunaga, N.; Sasaki, Y.; Ohmiya, H. Organophotoredox-Catalyzed Decarboxylative C(sp3)–O Bond Formation. J. Am. Chem. Soc. 2020, 142, 1211–1216. DOI: 10.1021/jacs.9b12335
  5. Lo, J. C.; Gui, J.; Yabe, Y.; Pan, C.-M.; Baran, P. S. Functionalized Olefin Cross-Coupling to Construct Carbon−Carbon Bonds. Nature 2014, 516, 343– DOI: 10.1038/nature14006
  6. Green, S. A.; Huffman, T. R.; McCourt, R. O.; van der Puyl, V.; Shenvi, R. A. Hydroalkylation of Olefins to Form Quaternary Carbons. J.  Am. Chem. Soc.2019, 141, 7709–7714. DOI: 10.1021/jacs.9b02844
  7. Arendt, K. M.; Doyle, A. G. Dialkyl Ether Formation by Nickel-Catalyzed Cross-Coupling of Acetals and Aryl Iodides. Angew. Chem., Int. Ed. 2015, 54, 9876–9880. DOI: 10.1002/anie.201503936
  8. Lin, Z.; Lan, Y.; Wang, C. Synthesis of gem-Difluoroalkenes via Nickel-Catalyzed Reductive C–F and C–O Bond Cleavage. ACS Catal. 2019, 9, 775–780. DOI: 1021/acscatal.8b04348
  9. Rossolini, T.; Ferko, B.; Dixon, D. J. Photocatalytic Reductive Formation of a-Tertiary Ethers from Ketals. Org. Lett. 2019, 21, 6668–6673. DOI: 10.1021/acs.orglett.9b02273
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. トイレから学ぶ超撥水と超親水
  2. カーボンナノベルトを結晶溶媒で一直線に整列! – 超…
  3. 生きたカタツムリで発電
  4. 富士フイルム和光純薬がケムステVプレミアレクチャーに協賛しました…
  5. 光とともに変身する有機結晶?! ~紫外光照射で発光色変化しながら…
  6. 科学カレンダー:学会情報に関するお役立ちサイト
  7. すべてがFになる
  8. 化学工業で活躍する有機電解合成

注目情報

ピックアップ記事

  1. 2016年2月の注目化学書籍
  2. 【書評】きちんと単位を書きましょう 国際単位系 (SI) に基づいて
  3. 元素周期 萌えて覚える化学の基本
  4. ピクテ・スペングラー反応 Pictet-Spengler Reaction
  5. 病理学的知見にもとづく化学物質の有害性評価
  6. 第99回日本化学会年会 付設展示会ケムステキャンペーン Part III
  7. タミフル―米国―厚労省 疑惑のトライアングル
  8. Chem-Station9周年へ
  9. 佐藤 一彦 Kazuhiko Sato
  10. ウレタンを選択的に分解する触媒の開発―カルボニル基を保持してウレタンからホルムアミドとアルコールへ分解ー

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年11月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

最新記事

新発想の分子モーター ―分子機械の新たなパラダイム―

第646回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機反応論研究室 助教の …

大人気の超純水製造装置を組み立ててみた

化学・生物系の研究室に欠かせない超純水装置。その中でも最も知名度が高いのは、やはりメルクの Mill…

Carl Boschの人生 その11

Tshozoです。間が空きましたが前回の続きです。時系列が前後しますが窒素固定の開発を始めたころ、B…

PythonとChatGPTを活用するスペクトル解析実践ガイド

概要ケモメトリクスと機械学習によるスペクトル解析を、Pythonの使い方と数学の基礎から実践…

一塩基違いの DNA の迅速な単離: 対照実験がどのように Nature への出版につながったか

第645回のスポットライトリサーチは、東京大学大学院工学系研究科相田研究室の龚浩 (Gong Hao…

アキラル色素分子にキラル光学特性を付与するミセルを開発

第644回のスポットライトリサーチは、東京科学大学 総合研究院 応用化学系 化学生命科学研究所 吉沢…

有機合成化学協会誌2025年2月号:C–H結合変換反応・脱炭酸・ベンゾジアゼピン系医薬品・ベンザイン・超分子ポリマー

有機合成化学協会が発行する有機合成化学協会誌、2025年2月号がオンライン公開されています。…

草津温泉の強酸性硫黄泉で痺れてきました【化学者が行く温泉巡りの旅】

臭い温泉に入りたい!  というわけで、硫黄系の温泉であり、日本でも最大の自然温泉湧出量を誇る草津温泉…

ディストニックラジカルによる多様なアンモニウム塩の合成法

第643回のスポットライトリサーチは、関西学院大学理工学研究科 村上研究室の木之下 拓海(きのした …

MEDCHEM NEWS 34-1 号「創薬を支える計測・検出技術の最前線」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP