[スポンサーリンク]

一般的な話題

その構造、使って大丈夫ですか? 〜創薬におけるアブナいヤツら〜

[スポンサーリンク]

 

新参スタッフの DAICHAN です。
前回の記事「その化合物、信じて大丈夫ですか? 〜創薬におけるワルいヤツら〜」では、創薬の邪魔者とも言える PAINS について紹介しました。
今回は、邪魔なだけでは済まない、もっとアブナいヤツらについてのお話です。

こいつは厄介! アラート構造

創薬の初期段階では、構造活性相関取得のためにさまざまな官能基変換がなされます。
思いつく官能基を挙げてみてください。メチル基、ヒドロキシ基、アミノ基、ニトロ基、カルボニル基…etc…。とりわけカルボニル基からはさらに色々派生した官能基が思いつきます。アシルハライドや酸無水物は合成に欠かせない有用なカルボニル誘導体ですね。ですがその反応性の高さから、そのものを医薬品として使うことはまずできません。
アシルハライドや酸無水物のような反応性の高い官能基は創薬において「アラート構造 (structural alerts)」と呼ばれ、使用が忌避される傾向にあります。

最初期に提示されたアラート構造は、そのような高反応性基に関するものがほとんどでした。大学で有機化学をかじったことのある方ならば何となく想像がつきそうなものです。
しかし最近は、知っていないと気づけない、数多くのアラート構造が発見・提唱されています。創薬に携る皆様も、知らず知らずのうちに作ってしまっているかも…? そんなアラート構造による毒性発現には、生体内の薬物代謝酵素が深く絡んでいます。

変わっちまったぜ、アイツ…。アブナい「反応性代謝物」

生体には、外部から取り込まれた異物を代謝し解毒する数多くの酵素が備わっています。有名どころはシトクロムP450 (CYP) ですね。解毒代謝酵素は、基質の酸化により水溶性を上げる CYP などの第 I 相解毒代謝酵素と、基質にグルクロン酸・硫酸基などを付加しさらに水溶性を上げ排泄を促進する抱合酵素などの第 II 相解毒代謝酵素に大別されます。
CYPは実に基質特異性の低い酵素で、種々のアイソフォーム (CYP1A1, 2C9, 2C19, 2E1, 3A4…) がさまざまな基質の代謝を担います。しかしその基質特異性の低さゆえ、CYP を介した薬物相互作用がしばしば問題になります。例えば CYP3A4 の基質薬物には、ニフェジピン、ベラパミル、ワルファリン、トリアゾラム、シクロスポリン、スボレキサントなどがあります。マクロライド系抗生物質のクラリスロマイシンはCYP3A4 を強力に阻害するため、これらの薬剤との併用は注意または禁忌となっています (併用すると過剰な薬効が発現するため)。
CYP の問題点は、そのような薬物相互作用だけではありません。CYP によってある置換基が酸化された結果、元の化合物よりも不安定な反応性代謝物 (Reactive Metabolite) を生じることがあります
図1 は有名な鎮痛薬、アセトアミノフェンの代謝機構です。

図1. アセトアミノフェンの代謝機構

アセトアミノフェンは通常グルクロン酸抱合を受け安全に体外へ排泄されます (図1 左上→左下) が 、一部は CYP2E1 により酸化されキノンイミン型 (キノイド) の N-アセチル-パラベンゾキノンイミン (NAPQI) となります (図1 左上→中央)。NAPQI はチオールとの反応性が高く、大抵は豊富に存在するグルタチオン (GSH) によって抱合され、グルクロン酸抱合体と同様安全に排泄されます (図1 中央→右上)。しかし、例えば CYP2E1 の誘導剤であるエタノールを多量に摂取すると、グルクロン酸抱合よりも CYP による代謝が優先し、NAPQI の生成割合が増加します。やがて GSH が枯渇しキノイドを捕捉できなくなると、今度はさまざまなタンパク質由来のチオール基が NAPQI と不可逆的に結合し、本来の機能が阻害され、毒性発現に繋がります (図1 中央→右下)。
親化合物であるアセトアミノフェンのフェノール性ヒドロキシ基とアセトアミド基はパラ位の関係に位置し、pro-quinoidal (キノイド前駆体) な構造を取っています。このような、代謝によって反応性の高い部位を生じ得る構造を「アラート構造」に含める例が非常に多くなってきました。親化合物そのものは安定でも、生体内特有の反応によってアブナいヤツに変わってしまう (代謝活性化) ことがままあるのです

違いはどこだ? 見事なアラート構造の回避術

もうひとつアラート構造反応性代謝物にまつわる話題を挙げます。アラート構造による肝毒性の回避に繋がるお話です。
非ステロイド性抗炎症薬の分類の一つに、オキシカムという化合物群があります。中でもメロキシカム (モービック®) は、ロキソプロフェンやジクロフェナクなどに次いでそれなりに処方される印象があります。一方、スドキシカムという化合物は、重篤な肝障害の発症により開発中止となりました。図2にメロキシカムとスドキシカムの構造をそれぞれ示します。この二つ、いったいどこに違いがあるでしょうか?

図2 オキシカム系抗炎症薬メロキシカム及びスドキシカムの構造

答えは一目瞭然、末端のチアゾールにメチル基が生えているか生えていないかの違いしかありません。しかしこの一個のメチル基が、代謝と毒性に多大な影響を及ぼしているのです。
これらは両方とも、アラート構造に該当する2-アミノチアゾール部位を有しています。当該部位にメチル基を持たないスドキシカムは、CYP によりエポキシドを経てアシルチオウレア体へと代謝されます (図3) 。アシルチオウレアは反応性が高く、このためスドキシカムは重篤な肝毒性を示します。一方で、メロキシカムはメチル基の存在によりエポキシ化が進行せず、代わりにメチル基が水酸化を受けヒドロキシメチル体となり、その後カルボン酸への酸化と抱合により安全に体外へ排泄されます (図3)。実際、メロキシカム製剤のモービック®は添付文書の使用上の注意欄に「肝障害の患者」との記載はあるものの、本邦での承認から 20 年経過 (2020年現在) した今でも世界100カ国以上で問題なく使用されています。実に、たった一つのメチル基で代謝そして開発という二つの運命が大きく左右された例です。

図3 スドキシカム及びメロキシカムのアラート部位と代謝経路[1]

アラート構造あれこれ

インドールは創薬で頻出する重要な骨格です。そもそも必須アミノ酸のトリプトファンがインドール骨格を有していることからも、生命化学と密接に関与する構造と言えるでしょう。ですが、トリプトファンに似た 3-アルキルインドールは、なんとアラート構造に含まれる骨格なのです。図4 に示すように、生体分子との共有結合を引き起こしやすいイミンやエポキシドが代謝により生成します。

図4  3-アルキルインドールの代謝活性化経路

ベンゾジオキソランもまた医薬品に頻出する部分構造でありながら、代謝により反応性代謝物を生成するアラート構造に該当します。ベンゾジオキソランは CYP による代謝を経て、カルベンや o-ベンゾキノンなどの高反応性中間体を形成し、生体成分を不可逆的に修飾します (図5)。例えば抗うつ薬のパロキセチン (パキシル®、図5 inset) は構造中にベンゾジオキソラン部位を含み、CYP2D6 を不可逆的に阻害します。CYP2D6 の基質である抗精神病薬のピモジドは、パロキセチンとの併用により血中濃度が増加し QT 延長などの致死的な副作用が生じやすくなるため、併用禁忌とされています。

図5  ベンゾジオキソランの代謝活性化経路

その他の代謝に関連するアラート構造として、チオフェン、フラン、ニトロベンゼン、アニリン、ヒドラジンなどが挙げられます。3-アルキルインドールやベンゾジオキソランも含め、正書 [2] に具体例がまとめられていますので、より深く学びたい方は参考にしてみてください。

最後に

製薬企業での合成指針では、独自のアラート構造を組み込みフィルタリングを掛けている場合がほとんどだと言います。開発途中でのドロップアウトや上市後の撤退を避け、副作用発現や経済的損失を出さないための非常に重要な戦略でしょう。しかし、アラート構造を極度に恐れることは、構造の多様性を損失することにも繋がります。例えば薬理活性維持のためにどうしてもアラート構造を残さなければならない場合、他の部位の修飾・変換によって薬効を向上しドーズ (投与量) を下げることで反応性代謝物の絶対的な生成量を数ケタ減らすことができれば、反応性代謝物による生体傷害は無視できる程度になる場合もあります (確率的要素を含む癌原性・変異原性などを除く)。また、いわゆるバイオアイソスターの活用によってアラート構造を回避することも可能です。電子密度の低減や、代謝部位をスイッチング (他の部位を代謝されやすくする) も有用な方法です[3]
創薬ナレッジとしてアラート構造というアブナいヤツらの存在を念頭に置き、上手に利用し最終的に回避することがメディシナルケミストに必須のスキルであると考えられます。

参考文献

  1. Kalgutkar, A. M. ACS Cent. Sci. 2015, 1, 163. DOI10.1021/acscentsci.5b00231
  2. 長野哲雄 編、創薬化学 –メディシナルケミストへの道-、2018
  3. Limban,C.; Nuţă, D. C.; Chiriţă, C.;  Negreș, S. Arsene, A. L.: Goumenou M.;  Karakitsios, S. P.; Tsatsakis, A.M.; Sarigiannise, D. A., Toxicol. Rep. 2018, 5, 943. DOI: 10.1016/j.toxrep.2018.08.017

関連書籍

[amazonjs asin=”4807909487″ locale=”JP” title=”創薬化学: メディシナルケミストへの道”] [amazonjs asin=”4758103364″ locale=”JP” title=”実験医学増刊 Vol.32 No.2 研究成果を薬につなげる アカデミア創薬の戦略と実例 (実験医学増刊 Vol. 32-2)”] [amazonjs asin=”4807907115″ locale=”JP” title=”薬物代謝学―医療薬学・医薬品開発の基礎として”]

関連リンク

その化合物、信じて大丈夫ですか? 〜創薬におけるワルいヤツら〜

Avatar photo

DAICHAN

投稿者の記事一覧

創薬化学者と薬局薬剤師の二足の草鞋を履きこなす、四年制薬学科の生き残り。
薬を「創る」と「使う」の双方からサイエンスに向き合っています。
しかし趣味は魏志倭人伝の解釈と北方民族の古代史という、あからさまな文系人間。
どこへ向かうかはfurther research is needed.

関連記事

  1. 分子研 大学院説明会・体験入学説明会 参加登録受付中!
  2. 核酸医薬の物語3「核酸アプタマーとデコイ核酸」
  3. フラッシュ自動精製装置に新たな対抗馬!?: Reveleris(…
  4. 多様なペプチド化合物群を簡便につくるー創薬研究の新技術ー
  5. 荒木飛呂彦のイラストがCell誌の表紙を飾る
  6. 【追悼企画】カナダのライジングスター逝く
  7. ゲルマベンゼニルアニオンを用いた単原子ゲルマニウム導入反応の開発…
  8. 奇妙奇天烈!植物共生菌から「8の字」型の環を持つ謎の糖が発見

注目情報

ピックアップ記事

  1. インドール一覧
  2. 文具に凝るといふことを化学者もしてみむとてするなり⑰:MacBook Airの巻
  3. “アルデヒドを移し替える”新しいオレフィン合成法
  4. リチウム金属電池の寿命を短くしている原因を研究者が突き止める
  5. 【5月開催】第八回 マツモトファインケミカル技術セミナー 有機金属化合物「オルガチックス」の密着性向上剤としての利用 -プライマーとしての利用-
  6. 有機合成化学協会誌2023年10月号:典型元素・テトラシアノシクロペンタジエニド・二重官能基化・パラキノジメタン・キナゾリノン
  7. (+)-MTPA-Cl
  8. 【5月開催】 【第二期 マツモトファインケミカル技術セミナー開催】 有機金属化合物 オルガチックスによる「密着性向上効果の発現(プライマー)」
  9. 第九回 均一系触媒で石油化学に変革を目指すー山下誠講師
  10. Reaxys体験レポート:ログイン~物質検索編

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年11月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

最新記事

硫黄と別れてもリンカーが束縛する!曲がったπ共役分子の構築

紫外光による脱硫反応を利用することで、本来は平面であるはずのペリレンビスイミド骨格を歪ませることに成…

有機合成化学協会誌2024年11月号:英文特集号

有機合成化学協会が発行する有機合成化学協会誌、2024年11月号がオンライン公開されています。…

小型でも妥協なし!幅広い化合物をサチレーションフリーのELSDで検出

UV吸収のない化合物を精製する際、一定量でフラクションをすべて収集し、TLCで呈色試…

第48回ケムステVシンポ「ペプチド創薬のフロントランナーズ」を開催します!

いよいよ本年もあと僅かとなって参りましたが、皆様いかがお過ごしでしょうか。冬…

3つのラジカルを自由自在!アルケンのアリール–アルキル化反応

アルケンの位置選択的なアリール–アルキル化反応が報告された。ラジカルソーティングを用いた三種類のラジ…

【日産化学 26卒/Zoomウェビナー配信!】START your ChemiSTORY あなたの化学をさがす 研究職限定 キャリアマッチングLIVE

3日間で10領域の研究職社員がプレゼンテーション!日産化学の全研究領域を公開する、研…

ミトコンドリア内タンパク質を分解する標的タンパク質分解技術「mitoTPD」の開発

第 631 回のスポットライトリサーチは、東北大学大学院 生命科学研究科 修士課程2…

永木愛一郎 Aiichiro Nagaki

永木愛一郎(1973年1月23日-)は、日本の化学者である。現在北海道大学大学院理学研究院化学部…

11/16(土)Zoom開催 【10:30~博士課程×女性のキャリア】 【14:00~富士フイルム・レゾナック 女子学生のためのセミナー】

化学系の就職活動を支援する『化学系学生のための就活』からのご案内です。11/16…

KISTEC教育講座『中間水コンセプトによるバイオ・医療材料開発』 ~水・生体環境下で優れた機能を発揮させるための材料・表面・デバイス設計~

 開講期間 令和6年12月10日(火)、11日(水)詳細・お申し込みはこちら2 コースの…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP