[スポンサーリンク]

スポットライトリサーチ

連続アズレン含有グラフェンナノリボンの精密合成

[スポンサーリンク]

第280回のスポットライトリサーチは、京都大学大学院薬学研究科(高須研究室)・小川直希さんにお願いしました。

新たな炭素同素体として脚光を浴びるカーボンナノチューブグラフェンですが、この部分構造を取り出して合成し、機能を調べる研究が合成化学分野で活発に行われています。もともと含まれない5員環や7員環を組み込むことができれば、湾曲したカーボン材料となり、オリジナルの同素体にはない新たな性質の発現も期待できます。小川さんの研究はまさにそのような分子合成であり、「うねり」を持つ構造が見いだされています。本成果はJ. Am. Chem. Soc.誌 原著論文およびCover Pictureプレスリリースとして公開されています。

“Helical Nanographenes Embedded with Contiguous Azulene Units”
Ogawa, N.; Yamaoka, Y.; Takikawa, H.; Yamada, K.-i.; Takasu, K. J. Am. Chem. Soc. 2020, 142, 13322–13327. doi:10.1021/jacs.0c06156

研究室を主宰されている高須清誠 教授から、小川さんについて以下のコメントを頂いています。それでは今回もインタビューをお楽しみください!

 小川直希君は、自分を律して主体的に研究や学修ができる学生です。本研究がスタートしたきっかけは、学部生時代に発見した非常に奇妙な連続反応でした。その成果をもとに「こんなへんてこりんな分子を作ったら面白そうだ」という私の妄言を、今回の成果のように彼は独力で次々と形にしてくれています。きっと、彼の中でも様々なアイデアが湧き出ていることでしょう。彼の研究の強みは、周囲に流されず強い信念をもって自分のアイデアの実現に力を注ぐことだと思っています。

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

本研究は、連続アズレン環構造を埋め込んだキラルナノグラフェンを合成し、その基本的性質を明らかにした研究です。非ベンゼン系芳香環の一つであるアズレンはそれ自体おもしろい化合物であると共に、最近ではナノグラフェン中にこの構造を埋め込む試みが活発化しており、エキゾチックな構造がいくつも報告されています。今回私達は、「連続アズレン環を埋め込む」点にこだわって化合物を設計・合成しました。合成にあたっては、鍵となる縮環アズレン構造を構築する新手法を見出す事ができ、これを利用することで標的化合物を得ることができました。合成品の解析から、合成前には予想だにしなかった面白い性質がいくつも見つかりました。アズレン環を埋め込む事によって現れる6–7–7–6縮環構造からなるエッジ構造が、室温下でキラリティを保持できるという点は、その最たるものだと思っています。

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

この研究で私が最も気に入っているのは、なんと言っても化合物の結晶構造が美しいところです。合成するのに随分と苦労した上に、結晶性の悪さから単結晶を得るのに半年間もかかってしまったので、結晶構造を得たときの感動には相当なものがありました。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

今回の研究で最も難しかったのは、アズレン含有ナノグラフェンの最大の特徴である、縮環アズレン構造をいかに構築するか、という点でした。私達が研究を開始した時点では、アズレン含有ナノグラフェンはあまり注目を集めてはいなかったようで、参考になる文献は極めて限られていました。通常のベンゼン系ナノグラフェンや、孤立した奇数員環を持つナノグラフェン合成で用いられる方法を流用することを試みは、残念ながらうまくいきませんでした。そんな中、ふと思いついた「電子環状反応で縮環アズレン環を構築する」というアイデアを、あまり深くは考えずに試したところうまく望みのアズレン環構造を構築することができました。

Q4. 将来は化学とどう関わっていきたいですか?

短期的(10年くらい?)には、企業の研究者という形で化学に携わって行きたいですね。その先も継続して化学研究を行っているかはわかりませんが、化学研究を通して身についた考え方はずっと残っていて、どんな仕事をするにも役立つのだろうと思います。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

月並みですが、人生はきっと一度きりなので、自分のやってみたいことをやるのが一番だろうと思います。研究では何かアイデアを実現しようとするとき、真摯に取り組んでいる人ほど多くの障壁、上手くいかない可能性を考えついて、足踏みしてしまうように思います。しかしそのアイデアが本当に自分のやりたいことで、たった一つでも上手くいく可能性が見つかったなら、難しいことは考えずにその一つに賭けてみても良いのでは無いでしょうか。それでも上手くいかなかったら、あるいは途中で興味を失ったら、別のアイデアを見つければ良いのではないでしょうか。

研究者の略歴

【名前】 小川直希
【所属】 京都大学大学院薬学研究科 薬品合成化学分野
【研究テーマ】 新奇な構造を持つ多環芳香族炭化水素の合成
【趣味】 爬虫類飼育

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 金ナノクラスター表面の自己組織化単分子膜を利用したテトラセンの高…
  2. 研究室クラウド設立のススメ(経緯編)
  3. ポンコツ博士の海外奮闘録 〜コロナモラトリアム編〜
  4. 有機合成化学協会誌2018年4月号:脱カルボニル型カップリング反…
  5. 銀カルベノイドの金属特性を活用したフェノール類の不斉脱芳香族化反…
  6. 窒素を直接 “消去” する分子骨格変換
  7. MEDCHEM NEWS 33-4 号「創薬人育成事業の活動報告…
  8. 超原子価ヨウ素試薬PIFAで芳香族アミドをヒドロキシ化

注目情報

ピックアップ記事

  1. 【2021年卒業予定 修士1年生対象】企業での研究開発を知る講座
  2. 治療応用を目指した生体適合型金属触媒:② 細胞外基質・金属錯体を標的とする戦略
  3. 単分子の電気化学反応を追う!EC-TERSとは?
  4. コンプラナジンAの全合成
  5. マンダム、不快刺激が少なく持続的な清涼成分を発見 ~夏をより快適に過ごすための研究~
  6. 武田薬の糖尿病治療薬、心臓発作を予防する効果も
  7. 2005年7月分の気になる化学関連ニュース投票結果
  8. 健康的なPC作業環境のすすめ
  9. rhodomolleins XX と XXIIの全合成
  10. 2010年日本化学会各賞発表-学会賞-

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年11月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

最新記事

有機合成化学協会誌2024年12月号:パラジウム-ヒドロキシ基含有ホスフィン触媒・元素多様化・縮環型天然物・求電子的シアノ化・オリゴペプチド合成

有機合成化学協会が発行する有機合成化学協会誌、2024年12月号がオンライン公開されています。…

「MI×データ科学」コース ~データ科学・AI・量子技術を利用した材料研究の新潮流~

 開講期間 2025年1月8日(水)、9日(木)、15日(水)、16日(木) 計4日間申込みはこ…

余裕でドラフトに収まるビュッヒ史上最小 ロータリーエバポレーターR-80シリーズ

高性能のロータリーエバポレーターで、効率良く研究を進めたい。けれど設置スペースに限りがあり購入を諦め…

有機ホウ素化合物の「安定性」と「反応性」を両立した新しい鈴木–宮浦クロスカップリング反応の開発

第 635 回のスポットライトリサーチは、広島大学大学院・先進理工系科学研究科 博士…

植物繊維を叩いてアンモニアをつくろう ~メカノケミカル窒素固定新合成法~

Tshozoです。今回また興味深い、農業や資源問題の解決の突破口になり得る窒素固定方法がNatu…

自己実現を模索した50代のキャリア選択。「やりたいこと」が年収を上回った瞬間

50歳前後は、会社員にとってキャリアの大きな節目となります。定年までの道筋を見据えて、現職に留まるべ…

イグノーベル賞2024振り返り

ノーベル賞も発表されており、イグノーベル賞の紹介は今更かもしれませんが紹介記事を作成しました。 …

亜鉛–ヒドリド種を持つ金属–有機構造体による高温での二酸化炭素回収

亜鉛–ヒドリド部位を持つ金属–有機構造体 (metal–organic frameworks; MO…

求人は増えているのになぜ?「転職先が決まらない人」に共通する行動パターンとは?

転職市場が活発に動いている中でも、なかなか転職先が決まらない人がいるのはなぜでしょう…

三脚型トリプチセン超分子足場を用いて一重項分裂を促進する配置へとペンタセンクロモフォアを集合化させることに成功

第634回のスポットライトリサーチは、 東京科学大学 物質理工学院(福島研究室)博士課程後期3年の福…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP